Измерение углов единицы измерения углов приборы для измерения углов

Метрология

Методы и средства контроля и измерения углов

Углы и измерение углов

Угловые размеры определяют положение плоскостей, осей, линий, центров отверстий и т. д. Угловые размеры бывают зависимые и назависимые.
Независимые углы не связаны с другими параметрами изделия; зависимые углы определяются основными параметрами изделий, к которым они относятся.

В качестве единицы измерения плоских углов Международной системой единиц (СИ) принят радиан — угол между двумя радиусами круга, вырезающими на его окружности дугу, длина которой равна радиусу данного круга.
Измерение углов в радианах на практике связано с значительными трудностями, так как ни один из современных угломерных приборов не имеет градуировки в радианах.
По этой причине в машиностроении для угловых измерений в основном применяются внесистемные единицы: градус, минута и секунда. Эти единицы связаны между собой следующими соотношениями:

  • 1 рад = 57°17׳45״ = 206 265″
  • 1° = π/180 рад = 1,745329 × 10 -2 рад;
  • 1‘ = π /10800 рад = 2,908882 × 10 -1 рад;
  • 1” = π/648000 рад = 4,848137 × 10 -6 рад.

Значение угла при измерении определяют сравнением его с известным углом. Известный угол может быть задан так называемыми жесткими (с постоянным значением угла) мерами — аналогами формы элементов детали: угловыми мерами, угольниками, угловыми шаблонами, коническими калибрами, многогранными призмами.
Измеряемый угол можно сравнивать также с многозначными угломерными штриховыми мерами и различными видами круговых и секторных шкал. Еще одним методом получения известного угла является его расчет по значениям линейных размеров на основании тригонометрических зависимостей.

В соответствии с этим классификацию методов измерений углов производят в первую очередь по виду создания известного угла: сравнением с жесткой мерой, сравнением с штриховой мерой (гониометрические методы) и тригонометрическими методами (по значениям линейных размеров).

При сравнении углов с жесткой мерой отклонение измеряемого угла от угла меры определяют по просвету между соответствующими сторонами углов детали и меры, по отклонению показаний прибора линейных размеров, измеряющих несовпадение этих сторон или при контроле «по краске», т.е. по характеру тонкого, слоя краски, перенесенного с одной поверхности на другую.

В приборах для гониометрических измерений имеются штриховая угломерная шкала, указатель и устройство для определения положения сторон угла. Это устройство связано с указателем или шкалой, а измеряемая деталь — соответственно со шкалой или указателем. Определение положения сторон угла можно производить как контактным, так и бесконтактным (оптическим) способом. При соответствующих измеряемому углу положениях узлов прибора определяют угол относительного поворота шкалы и указателя.

При косвенных тригонометрических методах определяют линейные размеры сторон прямоугольного треугольника, соответствующего измеряемому углу, и по ним находят синус или тангенс этого угла (координатные измерения). В других случаях (измерение с помощью синусных или тангенсных линеек) воспроизводят прямоугольный треугольник с углом, номинально равным измеряемому, и устанавливая его как накрест лежащий с измеряемым углом, определяют линейные отклонения от параллельности стороны измеряемого угла основанию прямоугольного треугольника.

При всех методах измерений углов должно быть обеспечено измерение угла в плоскости, перпендикулярной к ребру двугранного угла. Перекосы приводят к погрешности измерения.

При наличии наклона плоскости измерения в двух направлениях погрешность измерения угла может быть и положительной и отрицательной. При измерениях малых углов эта погрешность не превысит 1% значения угла при углах наклона плоскости измерения до . Такая же зависимость погрешности измерения угла от углов перекоса получается и в случаях неточного базирования деталей на синусной линейке, несовпадения направления ребра измеряемого угла или оси призмы с осью поворота на гониометрических приборах (при фиксации положения граней по автоколлиматору), при измерениях с помощью уровней и т.п.

Угол наклона плоскостей обычно определяется уклоном, численно равным тангенсу угла наклона.
Малые значения уклонов часто указывают в микрометрах на 100 мм длины, в промилле или миллиметрах на метр длины (мм/м).
Например, в мм/м указывается цена деления уровней. Пересчет уклонов в угол обычно производится по приближенной зависимости: уклон 0,01 мм/м (или 1 мкм/100 мм) соответствует углу наклона в 2″ (погрешность подсчета угла по этой зависимости составляет — 3%).

Как было показано выше в машиностроении в зависимости от используемых средств и методов различают три основных способа измерения углов :

Сравнительный метод измерения углов с помощью жестких угловых мер. При этом измерении определяется отклонение измеряемого угла от угла меры.

Абсолютный гониометрический метод измерения углов, при котором измеряемый угол определяется непосредственно по угломерной шкале прибора.

Косвенный тригонометрический метод: угол определяется расчетным путем по результатам измерения линейных размеров (катетов, гипотенузы), связанных с измеряемым углом тригонометрической функцией (синусом или тангенсом).

Сравнительный метод измерения углов обычно сочетается с косвенным тригонометрическим методом, последним определяется разница сравниваемых углов в линейных величинах на определенной длине стороны угла.

Угловые призматические меры и угольники

Угловые призматические меры служат для хранения и передачи единицы плоского угла. Их применяют для проверки шаблонов и угловых размеров различных изделий; для градиуровки угломерных приборов, а также для непосредственных измерений.
Угловые меры, предназначенные для проверки угломерных приборов и рабочих мер, называют образцовыми.

По точности аттестации образцовые угловые меры делят на четыре разряда (1,2,3 и 4). Предельные погрешности аттестации рабочих углов не должны превышать для угловых мер 1-го разряда — ±0,5”; 2-го разряда — ±1”; 3-го — ±3”; 4-го — ±6”.
Угловые меры собирают в блоки с помощью специальных державок.

Контроль углов угольниками осуществляют, оценивая просвет между угольником и контролируемой деталью на глаз, или сравнивают с образцовой щелью, созданной с помощью концевых мер длины и лекальной линейки.
При использовании крупных угольников просвет оценивают с помощью щупов.
Погрешность проверки углов угольником зависит от погрешности самого угольника, длины сторон угла, по которой производится проверка, и других факторов.

Угломеры с нониусами

Угломеры с нониусами применяют для измерения профиля угла на деталях контактным методом с отсчетом по угловому нониусу с точностью 2‘ и 5‘. Состоит угломер из круглого угломерного диска, скрепленного с корпусом зажимной гайкой. На основании смонтированы установочная планка и нониус с нанесенными 30 делениями с двух сторон от нулевого штриха; каждое деление соответствует 2 мин.
Линейка с лицевой стороны имеет продольный ласточкообразный паз, по которому перемешается (в процессе установки линейки на угол) хвостовик прижима.

При измерении угломер накладывают на проверяемую плоскость детали так, чтобы линейка и рабочая плоскость корпуса были совмещены со сторонами измеряемого угла. Целое число градусов отсчитывают по шкале диска до нулевого деления (штриха) нониуса. Затем определяют деление нониуса, совпадающего с делениями основной шкалы (диска).
После этого определяют по нониусу сколько минут и градусов совпадают с делениями нониуса.

Оптический угломер

В корпусе оптического угломера закреплен стеклянный диск со шкалой, имеющей деления в градусах и минутах. Цена малых делений 10 ‘. С корпусом жестко скреплена основная (неподвижная) линейка. На диске смонтированы лупа, рычаг и укреплена подвижная линейка.
Под лупой параллельно стеклянному диску расположена небольшая стеклянная пластинка, на которой нанесен указатель, ясно видимый через окуляр. Линейку можно перемещать в продольном направлении и с помощью рычага закреплять в нужном положении.

Во время поворота линейки в ту или другую сторону будет вращаться в том же направлении диск и лупа. Таким образом, определенному положению линейки будет соответствовать вполне определенное положение диска и лупы. После закрепления линеек зажимным кольцом через лупу отсчитывают показания угломера.
Оптическим угломером можно измерять углы от 0 до 180°. Допускаемые погрешности показания оптического угломера ±5‘.

Индикаторный угломер

В индикаторном угломере обычная шкала и нониус заменены индикаторным циферблатом. Отсчет угловых размеров производится по показаниям стрелки на большой шкале через 10°. Цена деления 5‘, предел измерения угломера 0…360°.

Портативный оптический угломер-шаблон

Портативный оптический угломер-шаблон предназначен для проверки профиля резцов. Он состоит из стандартной восьмикратной лупы, неподвижно закрепленной на прозрачном диске из органического стекла. Вокруг оси, запрессованной в этот диск, свободно поворачивается стальной диск, по периметру которого с высокой точностью выполнены шаблоны наиболее часто встречающихся в практике углов, радиусов и кривых. Нужный профиль шаблона накладывают на затачиваемый резец и под лупой проверяют точность доводки.
Прибор отличается точностью и удобством, так как им можно пользоваться непосредственно на рабочем месте.

Источник

Измерение углов

Измерить угол — значит найти его величину. Величина угла показывает, сколько раз угол, выбранный за единицу измерения, укладывается в данном углу.

Обычно за единицу измерения углов принимают градус. Градус — это угол, равный части развёрнутого угла. Для обозначения градусов в тексте, используется знак ° , который ставится в правом верхнем углу числа, показывающего количество градусов (например, 60°).

Измерение углов транспортиром

Для измерения углов используют специальный прибор — транспортир:

У транспортира две шкалы — внутренняя и внешняя. Начало отсчёта у внутренней и у внешней шкал располагается с разных сторон. Чтобы получить правильный результат измерения, отсчёт градусов должен начинаться с правильной стороны.

Измерение углов производится следующим образом: транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах:

Говорят: угол BOC равен 60 градусов, угол MON равен 120 градусов и пишут: ∠BOC = 60°, ∠MON = 120°.

Для более точного измерения углов используют доли градуса: минуты и секунды. Минута — это угол, равный части градуса. Секунда — это угол, равный части минуты. Минуты обозначают знаком , a секунды — знаком » . Знак минут и секунд ставится в правом верхнем углу числа. Например, если угол имеет величину 50 градусов 34 минуты и 19 секунд, то пишут:

Свойства измерения углов

Если луч делит данный угол на две части (на два угла), то величина данного угла равна сумме величин двух полученных углов.

Рассмотрим угол AOB:

Луч OD делит его на два угла: ∠AOD и ∠DOB. Таким образом, ∠AOB = ∠AOD + ∠DOB.

Развёрнутый угол равен 180°.

Любой угол имеет определённую величину, большую нуля.

Источник

Угол. Измерение углов.

Измерение углов сводится к измерению соответствующих им дуг следующим образом. За единицу углов принимают угол, составляющий 1/90 часть прямого угла. Эту единицу называют угловым градусом.

За единицу дуг одинакового радиуса принимают такую дугу того же радиуса, которая соответствует центральному углу, равному угловому градусу. Такая дуга называется дуговым градусом.

Так как прямому центральному углу соответствует 1/4 окружности, то угловому градусу соответствует 1/90 четверти окружности. Значит, дуговой градус составляет 1/360 целой окружности.

Пусть требуется измерить угол AOB, то есть найти отношение этого угла к угловому градусу MNP.Для этого опишем из вершин углов дуги СD и EF произвольным, но одинаковым радиусом.

Тогда будем иметь:

Левое отношение этой пропорции — число, измеряющее угол AOB в угловых градусах Правое отношение — число, измеряющее дугу СD в дуговых градусах.

Следовательно, эту пропорцию можно выразить так: число, измеряющее угол в угловых градусах, равно числу, измеряющему соответствующую дугу в дуговых градусах.

Для краткости эту фразу выражают обыкновенно так: Угол измеряется соответствующей ему дугой.

Градусы угла или дуги подразделяются на 60 равных частей, называемых минутами (угловыми или дуговыми).

Минуту разделяют на 60 равных частей, называемых секундами (угловыми или дуговыми).

Из сказанного выше следует, что в угле содержится столько угловых градусов, минут и секунд, сколько в соответствующей ему дуге заключается дуговых градусов, минут и секунд.

Если, например, в дуге СD содержится 40 град. 25 мин. и 13,5 секунды (дуговых), то и в угле AOB заключается 40 град. 25 мин. 13,5 сек. (угловых). Это выражают сокращенно так:

обозначая значками (°), (‘), (‘’) соответственно градусы, минуты и секунды.

Так как прямой угол содержит 90°, то :

1. сумма углов всякого треугольника равна 180 °;

2. сумма острых углов прямоугольного треугольника равна 90°;

3. каждый угол равностороннего треугольника равен 60°;

4. сумма углов выпуклого многоугольника, имеющего n сторон, равна 180° (n — 2 ).

Транспортир — это прибор, употребляемый для измерения углов, представляет собой полукруг, дуга которого разделена на 180 градусов.

Чтобы измерить угол AOB, накладывают на него прибор так, чтобы центр полукруга совпал с вершиной угла, а радиусом OM совпал со стороной AO. Тогда число градусов, содержащееся в дуге PN, покажет величину угла AOB. При помощи транспортира можно также начертить угол, содержащий данное число градусов.

Конечно, на таком приборе нет возможности отсчитывать не только секунды, но и минуты. Измерение и построение можно выполнить только приближенно.

Источник

Математика. 5 класс

Конспект урока

Углы. Измерение углов

Перечень рассматриваемых вопросов:

— понятие «угол», «величина угла»;

— измерение величины угла.

Угол – геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки, которая называется вершиной угла.

Градус – единица измерения углов, составляющая часть развёрнутого угла.

Градусная мера угла – число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О.Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Всё вокруг – геометрия», – сказал в своё время французский архитектор Ле Корбюзье, и трудно с ним не согласиться. Геометрические фигуры постоянно встречаются в творениях природы и человека.

Сегодня мы рассмотрим ещё одну геометрическую фигуру – угол, разберём его виды и опишем процесс построения и измерения углов.

Для начала определим, что называют углом.

Углом называют геометрическую фигуру, образованную двумя лучами, выходящими из одной точки.

Построим угол. Для этого отметим на плоскости точку О и проведём два луча – ОК и ОМ. Получим геометрическую фигуру, образованную точкой О и двумя лучами, исходящими из этой точки. Такую геометрическую фигуру и называют углом.

Лучи ОК и ОМ называют сторонами угла, точку О – общее начало этих лучей – называют вершиной угла.

Обозначается угол чаще всего тремя буквами. Например, ∠КОМ или ∠МОК. В середине пишется буква, которой обозначена вершина угла. Также угол можно обозначать и одной буквой, поставленной у вершины угла. Например, ∠О.

Начертим два луча, исходящих из точки О и принадлежащих одной прямой.

Лучи ОС и OК вместе с точкой О дополняют друг друга до прямой – это дополнительные лучи. Угол называют развёрнутым, если его стороны являются дополнительными лучами.

Угол СОК – развёрнутый.

Построим развёрнутый угол АОВ и полуокружность с центром в точке О. Полуокружность разделим на 180 равных частей. Если построим углы с вершиной в точке О, стороны которых проходят через точки деления полуокружности, то таких углов будет 180. Один такой угол будет составлять часть развёрнутого угла.

Меру угла, составляющего часть развёрнутого угла, принимают за единицу измерения углов и называют градусом. Обозначают: 1º.

Градусной мерой угла называют число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.

Например, градусная мера угла КOВ равна 25 градусам, так как в нём единица измерения градус содержится двадцать пять раз. Записывают: ∠КОВ = 25º.

Стоит отметить, что для более точного измерения угла используют доли градуса:

– минуты, которые обозначают одной чёрточкой сверху над цифрой справа,

– секунды, которые обозначаются двумя чёрточками над цифрой справа.

В одном градусе содержится 60 минут, а в одной минуте – 60 секунд.

Например, если угол А равен 10 градусам 5 минутам, записывают: ∠А = 10º5′.

Градусная мера развёрнутого угла равна 180º.

Для измерения углов в градусах пользуются прибором, который называется транспортиром. На транспортире имеется шкала – полуокружность, разделённая на 180 равных частей. На линейке транспортира чёрточкой отмечен центр полуокружности транспортира.

Чтобы найти градусную меру угла, например, угла АВС, нужно совместить центр транспортира с вершиной угла, в данном случае точкой В; расположить линейку транспортира так, чтобы одна из сторон угла прошла через начало отсчёта шкалы транспортира – ноль градусов (в данном случае сторона АВ), и найти на шкале транспортира деление, через которое проходит другая сторона угла – в данном случае сторона ВС.

Это деление шкалы покажет градусную меру угла. В нашем случае – это 120º.

Транспортир применяется также для построения угла, мера которого известна. Построим, например, угол KNM, равный 60º. Для этого:

— проведём луч NM;

— совместим центр транспортира с точкой N;

— расположим линейку транспортира так, чтобы луч NM прошёл через начало отсчёта шкалы транспортира;

— найдём на шкале транспортира деление, соответствующее шестидесяти градусам, и отметим напротив него точку К;

— проведём луч NK. Мы построили угол KNM, равный 60º.

Ответить на вопрос, равны ли углы, и, если не равны, то какой из них больше или меньше, можно, сравнивая их градусные меры. Углы с равными градусными мерами равны. Из двух углов больше тот, который имеет большую градусную меру; а меньше тот, который имеет меньшую градусную меру.

Углы можно сравнить также наложением. Если при этом они совпадают, то равны.

Помимо развёрнутого, углы можно разделить на следующие виды: прямой, острый и тупой.

Угол называют прямым, если его градусная мера равна 90º.

Острым – если его градусная мера меньше 90º.

Тупым – если его градусная мера больше 90º и меньше 180º.

Рассмотрим ещё два вида углов, которые встречаются в геометрических задачах: это вертикальные углы, то есть пара углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого. Например, угол один и два.

И смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными полупрямыми.

Например, угол САВ и угол САD.

Вместе смежные углы составляют развёрнутый угол. Следовательно, сумма величин смежных углов составляет 180º.

Итак, сегодня мы познакомились с разными видами углов и научились строить их с помощью транспортира.

Для определения величины углов используется прибор, который называют транспортир. Но существуют и более высокоточные приборы.

Так, гониометр использовался для определения положения судна в море или океане.

Теодолит – прибор для измерения горизонтальных и вертикальных углов при геодезических работах, в строительстве и т. п.

Секстант применялся для измерения высоты Солнца над горизонтом с целью определения географических координат той местности, в которой производится измерение, и на судах.

Посох Якова, служащий для измерения углов, один из первых инструментов для астрономических наблюдений.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector