Меню

Измерение углового диаметра звезд



Измерение углового диаметра звезд

§ 150. Методы определения размеров звезд

Непосредственные измерения радиусов звезд, за некоторыми исключениями, практически невозможны, так как все звезды настолько далеки от нас, что их угловые размеры меньше предела разрешения крупнейших телескопов. Угловые диаметры двух-трех десятков ближайших звезд определены с помощью специальных звездных интерферометров. Принцип работы этих приборов основан на интерференции света звезды, отраженного парой широко расставленных зеркал. В отдельных случаях для определения углового диаметра звезды удается использовать вид интерференционной картины, возникающей во время покрытия звезд Луной. Линейные радиусы можно определить у затменно-переменных звезд по продолжительности затмения (см. § 156).

Если для звезды с известным расстоянием r найден каким-либо из описанных методов угловой диаметр d «, выраженный в секундах дуги, то ее линейный поперечник D может быть легко вычислен по формуле

Косвенным путем размеры звезды могут быть найдены в том случае, если известна ее болометрическая светимость Lbol и эффективная температура Teff . Действительно, согласно определению эффективной температуры (§ 108) 1 см 2 поверхности звезды излучает по всем направлениям поток энергии, равный

Полный поток, излучаемый всей звездой, получится, если умножить эту величину на площадь поверхности звезды 4 p R 2 . Следовательно, светимость звезды

Если теперь применить полученное выражение к Солнцу, светимость и радиус которого нам известны, то получим, обозначая через T ¤ эффективную температуру Солнца,

Деля почленно равенства (11.14) и (11.15), находим

Обычно радиус и светимость звезды выражают в солнечных единицах R ¤ = 1 и L ¤ = 1. Тогда

Поперечники самых крупных звезд в 1000 и более раз превосходят солнечный (у VV Сер в 1600 раз). Звезда, открытая Лейтеном в созвездии Кита, в 10 раз меньше Земли по диаметру, а размеры нейтронных звезд (§ 159) порядка десяти километров.

Источник

Измерение углового диаметра звезд

1. При известной светимости звезды L и ее эффективной темп-ре Tэ радиус звезды определяется в предположении, что ее излучение близко к излучению абсолютно черного тела : , где — постоянная Стефана-Больцмана (см. Эффективная температура ).

Светимость звезды можно определить по ее видимой звездной величине и расстоянию до нее (см. Расстояния до космич. объектов ), а Tэ находят по распределению энергии в спектре звезды или по ширине и интенсивности спектральных линий. Это — наиболее употребительный способ оценки размеров звезд.

2. Угловой радиус звезды находят по интерференц. картине, получающейся в результате перекрытия изображений звезды, построенных двумя объективами или частями одного объектива звездного интерферометра: , где угол выражен в секундах дуги, — длина волны принимаемого излучения в см, d — расстояние в см между центрами объективов, при к-ром интерференц. полосы в изображении звезды перестают наблюдаться.

Линейные радиусы R звезд связаны с угловыми соотношением (см), где D — расстояние до звезды в см.

Разработаны и др. методы оптич. интерферометрии, позволяющие измерить для близких ярких звезд с наибольшими угловыми размерами (см. Спекл-интерферометрия ).

3. При покрытии звезд Луной фотометрич. наблюдения дают возможность определить угловой размер звезды по характеру дифракции света на краю лунного диска. Этот метод приемлем лишь для неск. ярких звезд, затмеваемых Луной.

4. В случае затменно-переменных звезд размеры компонентов двойной системы можно определить из анализа кривой блеска (см. Двойные звезды ).

Анализ имеющихся данных показывает, что Р.з. колеблются от размеров, сравнимых с диаметром Солнечной системы (звезды-сверхгиганты), до размеров планет ( белые карлик ) или даже до неск. км ( нейтронные звезды ). На главной последовательности звезды имеют тем большие размеры, чем больше их массы или Tэ. В процессе эволюции звезд (при уходе с главной последовательности) Р.з. многократно возрастают при ихпревращении в красные гиганты или сверхгиганты. На конечной стадии эволюции Р.з. резко уменьшаются (белые карлики, нейтронные звезды, черные дыры).

Размеры некоторых ярких звезд (радиус звезды в радиусах Солнца)

Сверхгиганты
Бетельгейзе 300
Возничего А 251
Гиганты
Альдебаран 60
Арктур 30
Капелла 12
Звезды главной последовательности
Вега 2,4
Процион 1,9
Сириус А 1,8
Альтаир 1,4
Кентавра А 1,0
61 Лебедя А 0,7
Крюгер 60 А 0,3
Белые карлики
Вольф 1346 0,02
Сириус В 0,0034

Лит.:
Хенберн Браун Р., Измерение угловых диаметров звезд, УФН, 1927, т. 108, в. 3; Струве О., Линдс Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967.

Источник

Как измерили диаметр звезд

П. П. Добронравин

С тех пор прошло 300 лет. Современные телескопы неизмеримо превосходят и по величине и по качеству оптики первый телескоп Галилея, однако до сих пор никто не видел в телескоп диск звезды. Правда, звезда при рассматривании в телескоп, особенно при сильном увеличении, кажется кружочком, но диаметры этих кружочков одинаковы для всех звезд, чего не могло бы быть, если бы мы видели реальный диск звезды, — ведь звезды различны по величине и находятся на различных расстояниях от нас. К тому же при увеличении диаметра объектива телескопа диаметр этих кружочков уменьшается, звезды становятся ярче, но меньше.

Читайте также:  Измерение артериального давления у женщин

В оптике доказывается, что видимые нами диски звезд ничего общего с действительными размерами звезд не имеют и являются следствием самой природы света, получаются вследствие «дифракции» света. Границу видимости в телескоп ставит сам свет.

Но, как часто бывает в науке, те же самые свойства света, умело использованные, дали возможность измерить действительные диаметры звезд.

Немного о свойствах света

Электромагнитная теория света учит, что световой луч можно рассматривать как совокупность электромагнитных колебаний — волн, распространяющихся в пространстве с колоссальной скоростью — 300 000 км/сек. Колебания имеют определенную периодичность во времени и в пространстве. Это значит, во-первых, что они совершаются с определенной частотой — порядка 600 биллионов раз в секунду для видимого света, во-вторых. что имеются точки вдоль луча на некотором определенном расстоянии друг от друга, которые находятся в одинаковом состоянии. Расстояние между двумя такими точками называется длиной волны и для видимого света составляет около 0,0005 мм. Частота и длина волны определяют цвет луча.

Чтобы лучше понять дальнейшие явления, представим себе волны на поверхности воды. Они бьют о берег определенное число раз в минуту, — это их частота; гребень за гребнем идет на некотором постоянном расстояния,— это длина волны. И так же, как посредине между двумя гребнями на воде лежит впадина, — между двумя точками луча, разделенными расстоянием в одну длину волны, расположится точка, отклонение которой от состояния равновесия будет противоположно отклонению двух первых точек. Принято говорить, что две точки на расстоянии длины волны находятся в одинаковых фазах, а на расстоянии полуволны — в противоположных фазах, как гребень и впадина волн на воде (фазой называется величина, характеризующая состояние колеблющейся точки в данный момент). Нужно помнить, что сходство снеговых воли и волн на воде относится лишь к закономерностям, определяющим то и другое явление, и не пытаться представать себе световой луч как механическое «дрожание» какого-то вещества, — такое расширение аналогии было незаконно и неверно.

Если на пути водяных воли лежит какое-нибудь препятствие, например камень, то можно заметить (рис. 1), что волны как бы огибают его края и заходят за камень. То же происходит и со световыми волнами. Встречая какое-либо препятствие, волны света огибают его края, отклоняясь от прямолинейного распространения; однако, так как величина препятствия всегда во много раз больше длины волны, заметить эти «загнувшиеся» лучи не так легко. Они и дают явление дифракции света — появление света там, где его не могло бы быть, если бы луч был геометрической прямой линией. Так, смотря в микроскоп на тень от острого края экрана, можно заметить светлые и темные полосы, в центре тени от маленького кружочка можно увидеть светлую точку, образованную световыми волнами, обогнувшими края кружка, и т. д.

Дифракция происходит и с лучами света звезды, входящими в объектив телескопа. Крайние лучи пучка испытывают отклонение («загибание») на краю оправы объектива и дают в фокусе телескопа маленький диск, тем меньший, чем больше диаметр объектива при данном его фокусном расстоянии. Следовательно, если источник света даже геометрическая точка в полном смысле слова, то телескоп из-за дифракции всегда покажет его в виде маленького кружочка. И эти «дифракционные диски» не дают возможности видеть действительные диски звезд.

Второе явление, существенное для нас,— интерференция света. Представим себе, что в берег бьют две системы волн равной силы и одинаковой частоты, например волны, разбегающиеся от двух орошенных в воду камней. В некоторые точки берега гребни обеих волн будут приходить одновременно, волны сложатся, и колебание воды будет сильным; в другие, наоборот, гребень одной волны будет приходить одновременно с впадиной другой, волны уничтожат друг друга, и вода останется спокойной. В промежуточных точках волны будут в разной степени усиливаться и ослабляться.

То же явление, только более осложненное, будет происходить и с световыми волнами. При некоторых определенных условиях, освещая белый экран двумя лучами одного и того же цвета, можно получить «интерференцию» света. В тех точках, где колебания приходят в одинаковых фазах, они должны складываться, и яркость света повышаться; в других точках экрана, где волны обоих лучей приходят в противоположных фазах, с разностью в полволны, они взаимно уничтожатся, и два луча, сложившись, дадут темноту.

Такой опыт сделал около 1820 г. французский физик Френель. Он поставил стеклянную призму Р (рис. 2) с очень тупым углом между источником света S и белым экраном Е. На экране вместо ровного освещения получилась картина, состоящая из чередующихся светлых и темных полос. Произошло это потому, что призма разделила пучок лучей на два одинаковых по составу пучка, как бы идущих от двух воображаемых источников, S1 и S2. Точка а находится на равном расстоянии от обоих этих источников, «гребни» и «впадины» (говоря чисто условно, пользуясь аналогией с волнами воды) в обоих лучах совпадают, колебания складываются и усиливают друг друга; будет наблюдаться яркий свет. Иначе обстоит дело в точке b: она на половину длины волны ближе к S2, чем к S1, колебания приходят в противоположных фазах, «гребни», накладываясь на «впадины», взаимно уничтожаются, колебаний нет, и наблюдается темная полоса. Рассуждая так же, найдем, что по обе стороны светлой центральной полосы а будут чередоваться светлые и темные полосы, что и подтверждается на опыте.

Читайте также:  Электрический датчик для измерения атмосферного давления

Так будет наблюдаться явление в том случае, если все лучи источника света имеют одну и ту же длину волны. Обычный белый свет состоит из смеси лучей различных цветов, т. е. с разными длинами волн. Лучи каждого цвета дадут свою систему светлых и темных полос, системы эти наложатся друг на друга, и на экране по обе стороны от центральной белой полосы расположатся полосы, окрашенные в разные цвета.

Каковы же диаметры звезд?

Представьте себе, что вы смотрите на шарик диаметром в 1 мм с расстояния 206 м. Рассмотреть его, конечно, не удается, диаметр шарика будет виден под углом в одну секунду дуги.

Современные большие телескопы могут при большом увеличении показать отдельно две светящиеся точки на угловом расстоянии в десятые доли секунды. Можно рассчитать, что диаметр дифракционного диска звезды у наибольшего в мире 2,5-метрового рефлектора (отражательный телескоп с диаметром главного зеркала 2,5 м), находящегося на обсерватории Моунт-Вильсон (США, Калифорния) равен теоретически О’’45. И так как даже в этот телескоп все звезды кажутся одинаковыми, — реальные угловые диски их, очевидно, еще меньше.

Угловой диаметр звезд можно оценить косвенными методами. Есть звезды, меняющие свою яркость строго периодически, вследствие того что эти звезды двойные и более яркая затмевается менее яркий спутником при каждом обороте пары вокруг общего центра тяжести. Исследование закона изменения яркости этих звезд в соединении с спектроскопическими наблюдениями скоростей их движения дает возможность определить линейные размеры обеих звезд, а отсюда, если известно расстояние до звезды, — вычислить ее угловой диаметр.

Исследуя распределение энергии в звездном спектре, можно узнать температуру звезды; измерив полное излучение, приходящее от звезды на Землю, можно вычислить угол, под которым виден диаметр звезды, даже и не зная его расстояния.

Оказалось, что видимые диаметры даже самых больших звезд всего около 0″,05,— того же размера, что и дифракционный диск у 2,5-метрового рефлектора. Поэтому-то даже в величайший телескоп мира все звезды кажутся одинаковыми. Лишь с новым гигантским телескопом, который строится сейчас в Америке и будет иметь главное зеркало диаметром 5 м, можно будет увидеть, что некоторые звезды больше других, увидеть реальные диски звезд.

Дифракционный диск этого телескопа будет иметь диаметр 0″,022.

Но еще 70 лет тому назад, в 1868 г., Физо указал на возможность применения явления интерференции света к измерению диаметров звезд. Основная идея метода очень проста. Представим себе, что перед призмой Френеля (рис. 2) расположен не один, а два источника света. Каждый из них дает свою систему светлых и темных полос на экране. Передвигая источники света, можно расположить их так, что светлые полосы от одного источника лягут на темные полосы от другого, и наоборот. На экране получится ровное освещение. Зная данные взятой для опыта установки, можно вычислить угол, под которым видно из центра экрана расстояние между источниками в момент исчезновения полос.

Подобным образом можно поступить и с телескопом. Если на объектив телескопа одеть крышку с двумя отверстиями (рис. 3), то лучи света, пройдя объектив, дадут прежде всего обычное изображение звезды, дифракционный диск. Но, кроме того лучи идущие от обоих отверстий, встречаясь в главном фокусе телескопа, будут интерферировать, как лучи за призмой Френеля и дадут полосы на диске звезды. Закрыв одно из отверстий, увидим, что диск останется, но полосы на нем исчезнут. Расстояния между полосами тем меньше, чем дальше друг от друга отверстия в диафрагме. Такой прибор называется звездным интерферометром.

Предположим теперь, что звезда двойная, т. е. на самом деле там две, расположенные настолько близко, что они даже в телескоп видны как одна. Каждая из звезд даст свою систему полос на диске; системы эти наложатся одна на другую, Меняя расстояние между отверстиями в диафрагме, можно подобрать его так, что полосы на диске перестанут быть видимыми: светлые полосы, даваемые одной звездой, совпадут с темными, даваемыми другой, и диск будет освещен равномерно. Зная расстояние между отверстиями в диафрагме и фокусное расстояние телескопа, можно будет вычислить угол, под которым видно расстояние между составляющими двойной звезды, хотя различить их отдельно и не удастся.

Физо сделал и следующий шаг. Рассуждения его, на самом деле несколько более сложные, можно упрощенно изложить так: если звезда не точка, а маленький диск, то ее можно представить себе как бы состоящей из двух «полудисков» и рассматривать далее каждый из них как самостоятельный источник света, дающий свою систему полос. Тогда, меняя расстояние между отверстиями в диафрагме телескопа, можно добиться исчезновения полос, равномерного освещения дифракционного диска звезды. По расстоянию отверстий в диафрагме можно вычислить расстояние между «центрами тяжести» обоих «полудисков», а отсюда по формулам геометрии найти диаметр звезды.

Читайте также:  Lcr t4 esr измерение индуктивности

Идеи Физо были использованы Стефеном.

На 80-сантиметровом рефракторе обсерватории в Марселе он наблюдал интерференционные полосы от многих звезд, но ни разу не смог добиться их исчезновения. Затем работы Физо и Стефена были забыты.

Идеи эти высказал снова в 1890 г. известный американский физик Майкельсон. Пользуясь различными телескопами, он показал, что с помощью интерференции можно измерять расстояния между составляющими очень тесных двойных звезд, диаметры спутников Юпитера и т. д. Результаты хорошо совпадали с результатами обычных измерений точным микрометром. Однако астрономы не сразу обратили внимание на результаты Майкельсона. Лишь около 1920 г. эти опыты были повторены на обсерватории Моунт-Вильсон, сначала на полутораметровом, а затем на 2,5-метровом рефлекторах. Удалось измерить расстояния в некоторых очень тесных звездных парах, например расстояние между составляющими двойной звезды Капеллы, равное всего 0»,045.

Но обнаружилось, что даже при расположении отверстий диафрагмы на краях 2,5-метрового зеркала полосы на дифракционных дисках звезд не исчезают, — расстояние это еще слишком мало. Объектива или зеркала диаметром более 2,5 м тогда не существовало, нет еще и сейчас, и, казалось бы, дальше идти некуда.

Однако Майкельсон чрезвычайно просто и остроумно решил задачу, как бы искусственно увеличив размеры 2,5-метрового зеркала еще в 2,5 раза. На рис. 4 показан ход лучей в звездном интерферометре Майкельсона, расположенном на главном телескопе обсерватории Моунт-Вильсон. На стальной балке длиною 6 м, укрепленной на конце рефлектора, расположены два плоских зеркала 1 под углом 45° к оси телескопа. Лучи от этих зеркал идут к двум плоским зеркалам 2, главному вогнутому зеркалу рефлектора 3 и после отражения от выпуклого зеркала 4 и плоского 5 в окуляр 6. Встречаясь в фокусе телескопа, лучи дают ту же картину, что и при двух отверстиях в крышке на объективе, т. е. дифракционный диск и систему полос на нем. Расстояние между зеркалами может меняться от 2,5 до 6 м.

13 декабря 1920 г. давно поставленная цель была достигнута. Первой звездой, для которой удалось добиться исчезновения полос (рис. 7) при расстоянии между зеркалами интерферометра в 3 м, была альфа Ориона (Бетельгейзе). Для ее диаметра получилась величина 0″,047, в хорошем согласия с теоретическими подсчетами. Тем же интерферометром были измерены видимые диаметры еще нескольких звезд.

Но даже расстояние 6 м между зеркалами интерферометра слишком мало для огромного большинства звезд. Так как для измерения диаметров звезд не важно, чтобы главное зеркало телескопа имело максимальный диаметр, а существенно расстояние между подвижными зеркалами, — в 1930 г. был построен новый интерферометр с главным зеркалом диаметром 100 см и балкой длиной 15 м (рис. 8). Этот интерферометр уже является не насадкой на телескоп, а вполне самостоятельным инструментом. С ним при помощи улучшенной методики наблюдений (наблюдалось не только расстояние, при котором полосы исчезают, но и оценивалась степень видимости полос при других расстояниях между зеркалами путем сравнения с искусственными полосами) удалось измерить диаметры довольно большого числа звезд. Часть результатов этих измерений приведена в табличке. Можно заметить, что согласие между наблюденными и вычисленными теоретически диаметрами звезд очень хорошее.

Разумеется, что сейчас могут быть измерены диаметры лишь наиболее близких к нам и очень больших звезд, — диаметры остальных звезд значительно меньше и недоступны даже 15-метровому интерферометру. В последней строке таблицы приведена Вега, одна из наиболее ярких звезд нашего северного неба. Чтобы измерить ее диаметр, пришлось бы раздвинуть зеркала интерферометра на 50 м.

В последнем столбце таблички приведены действительные диаметры звезд, причем диаметр Солнца принят за единицу. Действительные размеры звезды легко вычислить если известен ее угловой диаметр и расстояние до нее. Из этого столбца видно, как огромны некоторые звезды. Если бы, например, Антарес оказался на месте нашего Солнца, то не только орбита Земли, но и орбита Марса лежала бы внутри него (рис. 9); Марс, среднее расстояние которого от Солнца равно 228 млн. км, двигался бы внутри Антареса. Зная размеры Антареса и его массу, можно вычислить среднюю плотность его вещества. И оказывается что плотность эта в три миллиона раз меньше плотности вещества нашего Солнца.

Для Бетельгейзе в табличке приведены два значения величины измеренного диаметра, из которых одно в 1,5 раза более другого. Это не ошибка в измерениях. Уже давно известно, что Бетельгейзе — переменная звезда, меняющая яркость и цвет Измерения показывают, что, по-видимому, меняется и ее диаметр — звезда «пульсирует» то сжимаясь, то расширяясь. Но для полной разгадки происходящих на этой звезде явлений необходимы длительные и тщательные наблюдения.

Источник