Меню

Качество измерений понятие характеристика



Характеристики качества измерений

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью, а также размером допускаемых погрешностей.

Точность измерений – характеристика качества измерения, отражающая близость к нулю погрешности результата измерения.

Достоверность измерений определяется степенью доверия к результату измерения и характеризуется вероятностью того, что истинное значение измеряемой величины находится в указанных пределах. Данная вероятность называется доверительной.

Правильность измерений – характеристика измерений, отражающая близость к нулю систематических погрешностей результатов измерений.

Сходимость результата измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами измерений и в одних и тех же условиях. Сходимость отражает влияние случайных погрешностей на результат измерения.

Воспроизводимость результатов измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами измерений, разными операторами, но приведённых к одним и тем же условиям.

1.4. СРЕДСТВА ИЗМЕРЕНИЙ

Средства измерений представляют собой совокупность технических средств, используемых при различных измерениях и имеющих нормированные метрологические свойства, т.е. отвечающих требованиям метрологии в части единиц и точности измерений, надёжности и воспроизводимости получаемых результатов, а также требованиям к их размерам и конструкции.

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

К средствам измерений относят: меры, измерительные приборы, измерительные преобразователи, измерительные установки, измерительные системы, измерительные принадлежности.

Мера – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью (гиря – мера массы, точный кварцевый генератор – мера частоты электрических колебаний). Меры бывают однозначные и многозначные. Однозначные меры (например, гиря, образцовая катушка сопротивлений) воспроизводят одно значение физической величины. Многозначные меры служат для воспроизведения ряда значений одной и той же физической величины. Примером многозначной меры является миллиметровая линейка, воспроизводящая наряду с миллиметровыми также и сантиметровые размеры длины.

Применяются также меры в виде наборов и магазинов мер. Набор мер представляет собой комплект однозначных мер разного размера, предназначенных для применения в различных сочетаниях (например, набор концевых мер длины). Магазин мер – набор мер, конструктивно объединённых в единое устройство, в котором предусмотрено ручное или автоматизированное соединение мер в необходимых комбинациях (например, магазин электрических сопротивлений).

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

Различают приборы прямого действия и приборы сравнения.

Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. К таким приборам относятся, например, термометры, амперметры, вольтметры и т.п.

Приборы сравнения предназначены для сравнения измеряемых величин с величинами, значения которых известны. Например, приборы для измерения яркости, давления сжатого воздуха и др. Эти приборы более точные.

По способу отчёта значений измеряемых величин приборы подразделяются на показывающие (в том числе аналоговые и цифровые) и регистрирующие. Регистрирующие приборы по способу записи делятся на самопишущие и печатающие. В самопишущих приборах запись показаний представляется в графическом виде, в печатающих – в числовой форме.

Измерительный преобразователь – техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Преобразуемую величину называют входной, а результат преобразования – выходной величиной. Основной метрологической характеристикой измерительного преобразователя считается соотношение между входной и выходной величинами, называемое функцией преобразования.

Измерительные преобразователи входят в состав измерительных приборов или применяются вместе с каким-либо средством измерений.

Самыми распространёнными являются первичные измерительные преобразователи (ПИП), которые служат для непосредственного восприятия измеряемой величины (как правило, неэлектрической) и преобразования её в другую величину – электрическую. ПИП, от которого поступают измерительные сигналы, конструктивно оформленный как обособленное средство измерений (без отсчётного устройства), называется датчиком.

Читайте также:  Понятие внесистемных единиц измерения

Промежуточными измерительными преобразователями называются преобразователи, расположенные в измерительной цепи после ПИП и обычно по измеряемой (преобразуемой) физической величине однородные с ним.

По характеру преобразования измерительные преобразователи делятся на аналого-цифровые (АЦП) и цифро-аналоговые (ЦАП). АЦП и ЦАП всегда являются промежуточными.

Измерительная установка – совокупность функционально объединённых мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте. Измерительную установку, применяемую для поверки, называют поверочной установкой. Измерительную установку, входящую в состав эталона, называют эталонной установкой. Некоторые большие измерительные установки называют измерительными машинами.

Измерительная система – совокупность функционально объединённых мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещённых в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях.

В настоящее время большинство измерительных систем являются автоматизированными. Несмотря на различные наименования (АИС – автоматизированная измерительная система, ИИС – информационно-измерительная система, ИВК – измерительно-вычислительный комплекс), все они обеспечивают автоматизацию процессов измерений, обработки и отображения результатов измерений. Измерительные системы широко используются для автоматизации технологических процессов в различных отраслях промышленности.

Измерительные принадлежности – это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности. Например, термометр может быть вспомогательным средством, если показания прибора достоверны только при строго регламентированной температуре; психрометр – если строго регламентируется влажность окружающей среды.

1.5. МЕТОДЫ ИЗМЕРЕНИЙ

Принцип измерения – совокупность физических принципов, на которых основаны измерения.

Метод измерения – это приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерения.

Метод измерения – совокупность конкретно описанных операций, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности.

Метод измерения должен по возможности иметь минимальную погрешность.

Методы измерений классифицируют по следующим признакам.

1. В зависимости от измерительных средств, используемых в процессе измерения, различают методы:
инструментальный, экспертный, эвристический, органолептический.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод основан на использовании данных нескольких специалистов. Широко применяется в спорте, искусстве, медицине.

Эвристический метод основан на интуиции. Широко используется способ попарного сопоставления, когда измеряемые величины сначала сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения.

Органолептический метод основан на использовании органов чувств человека (осязание, обоняние, зрение, слух, вкус).

2. По способу получения значений измеряемой величины различают: метод непосредственной оценки и методы
сравнения
(дифференциальный, нулевой, замещения, совпадений).

Сущность метода непосредственной оценки состоит в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) средств измерений, которые заранее проградуированы в единицах измеряемой величины. Это наиболее распространённый метод измерения Его реализуют большинство средств измерений. Простейший пример – измерение напряжения вольтметром.

К методам сравнения относятся все те методы, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной особенностью этих методов является непосредственное участие мер в процессе измерения.

При дифференциальном методе измеряемая величина Х сравнивается непосредственно или косвенно с величиной Хм , воспроизводимой мерой.

О значении величины Х судят по измеряемой прибором разности ΔХ = ХХм и по известной величине Хм , воспроизводимой мерой. Следовательно, Х = Хм + ΔХ. При этом методе производится неполное уравновешивание измеряемой величины.

Пример метода – измерение массы весами с набором гирь.

Нулевой метод – разновидность дифференциального метода. Его отличие в том, что разность ΔХ → 0, что контролируется специальным прибором высокой точности – нуль-индикатором. В данном случае значение измеряемой величины равно значению, воспроизводимому мерой. Погрешность метода очень мала.

Пример метода – взвешивание на весах, когда на одном плече находится взвешиваемый груз, а на другом – набор эталонных грузов. Или измерение сопротивления с помощью уравновешенного моста.

Читайте также:  Как правильно измерить дерево

Метод замещения заключается в поочередном измерении прибором искомой величины и выходного сигнала меры, однородного с измеряемой величиной. По результатам этих измерений вычисляется искомая величина.

Пример метода – измерение большого электрического сопротивления путём поочередного измерения силы тока, протекающего через контролируемый и образцовый резисторы. Питание цепи осуществляется от одного и того же источника постоянного тока.

При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой метой, определяют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко используется в практике неэлектрических измерений.

Пример – измерение длины при помощи штангенциркуля.

1.6. ВОСПРОИЗВЕДЕНИЕ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН И ПЕРЕДАЧА ИХ РАЗМЕРОВ

Источник

Основные характеристики и критерии качества измерений

К основным характеристикам измерений, которые определяют и качество измерений, относятся: принцип, метод, погрешность результатов измерения, точность, пра­вильность, сходимость и воспроизводимость результатов измерений, предел и границы обнаружения.

Приведем определения основных характеристик из­мерений.

Принцип измерений— явление, закон или эффект, по­ложенные в основу измерений. Например, применение эффекта Доплера для измерения скорости движения звезд, вращения небесных тел.

Метод измерений— прием или совокупность приемов сравнения измеряемой величины с ее единицей в соот­ветствии с реализованным принципом измерений. Методы измерений классифицируются по различным признакам. Один из них — это физический принцип, лежащий в основе измерений. Например, проведение измерений с помощью ядерного магнитного резонанса (магнитные измерения), электронной спектроскопией (оптические измерения) и др. Наиболее распространенное деление методов измерений — это на методы непосредственной оценки и методы сравнения. Метод непосредственной оценки позволяет определить значение величины по по­казанию средства измерения, которое заранее проградуировано в единицах измеряемой величины или в единицах других величин, от которых она зависит. Метод сравнения предусматривает сопоставление измеряемой величины с величиной, воспроизводимой мерой. Особенностью этого метода является непосредственное участие мер в процессе измерения. Методы сравнения подразделяются на дифференциальный, нулевой, замещения и совпадений. Каждый метод измерений характеризуется определенной погрешностью измерений.

Погрешность измерений отклонение результатов измерений от истинного (действительного) значения из­меряемой величины. Погрешность измерений представ­ляет собой сумму целого ряда составляющих, каждая из которых имеет свою причину.

Сходимость близость друг к другу результатов из­мерений одной и той же величины, полученных по одной методике, выполненных одним и тем же средством измерений, одним и тем же оператором в одинаковых условиях, в одной и той же лаборатории.

Воспроизводимость— близость результатов измере­ний одной и той же величины, полученных по единой методике, выполненной в разных лабораториях, разными экземплярами средств измерений, разными операторами, в разное время. Воспроизводимость результатов измерений зависит также от однородности и стабильности характе­ристик испытуемого образца.

Точность— характеристика качества измерений, от­ражающая близость к нулю погрешности результатов измерений. Высокая точность измерений соответствует малым величинам погрешностей измерения.

В 2002 г. в России введены в действие национальные стандарты ГОСТ Р ИСО 5725-2002 часть 1-6 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», которые являются прямым применением шести частей основополагающего международного стандарта ИСО 5725. Эти стандарты ис­пользуются в практической деятельности при разработке, аттестации и применении методик выполнения изме­рений, стандартизации методик контроля (испытаний, измерений, анализа), испытаниях продукции, в том числе для целей подтверждения соответствия, оценки компетен­тности испытательных лабораторий согласно требованиям ГОСТ Р ИСО/МЭК 17025-2006. Стандарты ИСО 5725 могут применяться для оценки точности выполнения измерений различных величин, характеризующих изме­ряемые свойства того или иного объекта, в соответствии со стандартизованной процедурой. Следует отметить, что в отечественной метрологии точность и погрешность результатов измерений, как правило, определяются срав­нением результатов измерений с истинным или дейст­вительным (условно истинным) значением измеряемой величины. Часто за действительное значение принимают общее среднее значение (математическое ожидание) установленной совокупности результатов измерений. В ИСО 5725 вместо термина «действительное значение» введен термин «принятое опорное значение», который и рекомендуется для использования в практике. Термины «правильность» и «прецизионность» в отечественных нор­мативных документах по метрологии до введения серии стандартов ГОСТ Р ИСО 5725 не использовались.

Дадим определение этих терминов.

Читайте также:  Основная единица измерения угла

Правильность характеризует степень близости среднего арифметического значения большого числа результатов измерений к истинному (действительному) или принятому опорному значению. Показателем правильности обычно является значение систематической погрешности.

Прецизионность — степень близости друг к другу независимых результатов измерений, полученных в кон­кретных регламентированных условиях. Мера прецизион­ности обычно вычисляется как стандартное отклонение результатов измерений. Крайние показатели прецизион­ности — повторяемость (сходимость) и воспроизводимость широко используются в отечественных нормативных документах, в том числе в большинстве национальных стандартов на методы контроля. Термин «точность» в со­ответствии с ГОСТ Р ИСО 5725-1—2002 определяется как степень близости результата измерений к применяемому опорному значению.

Внедрение стандартов ГОСТ Р ИСО 5725 направлено на более эффективную реализацию требований националь­ной системы стандартизации при разработке стандартов на методы контроля продукции различных отраслей промышленности.

Таким образом, при правильном выборе метода из­мерений, повышая такие показатели, как точность, пра­вильность, уменьшая погрешности измерений, можно достигать высокого качества измерений.

Источник

Электронная библиотека

Качество измерений – это совокупность свойств состояния измерений, обусловливающих получение результатов измерений с требуемыми точностными характеристиками, в необходимом виде и в установленный срок.

К основным свойствам состояния измерений относятся:

точность результатов измерений – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения; считают, что чем меньше погрешность измерения, тем больше его точность; она характеризуется погрешностями средств и методов измерений;

сходимость результатов измерений – это близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью; сходимость измерений двух групп многократных измерений может характеризоваться размахом, средней квадратической или средней арифметической погрешностью;

воспроизводимость результатов измерений – это близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.); воспроизводимость измерений может характеризоваться средними квадратическими погрешностями сравниваемых рядов измерений;

быстрота получения результатов – это свойство измерений, которое зависит от рационально составленной методики измерений, уровня автоматизации измерений и обработки полученных данных;

единство измерений – это состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Таким образом, единство измерений основано на четырех основных принципах:

— результаты выражены в узаконенных единицах;

— размер единиц, хранимых средствами измерений, равен размерам единиц, воспроизводимых первичными эталонами;

— погрешности результатов измерений известны;

— погрешности измерений не выходят за установленные пределы.

Без выполнения этих условий невозможно добиться единства измерений. Наиболее важным условием обеспечения единства измерений является «привязка» измерений к государственным эталонам, что в соответствии со стандартами ИСО серии 9000 является обязательным в обеспечении качества продукции.

Качество измерений также зависит от средств измерений; эргономических показателей, характеризующих систему «человек – объект измерения – средство измерения»; экологических показателей, характеризующих уровень вредных воздействий на окружающую среду при проведении измерений, безопасности обслуживающего персонала, осуществляющего измерения.

Все перечисленные свойства прямо или косвенно влияют на точность, своевременность и объем получаемой измерительной информации.

Только при наличии надежных средств измерений, правильном их выборе и применении можно обеспечить высокое качество измерений.

Задания к разделу 9: Ответить на вопросы по своему варианту (номер варианта соответствует последней цифре номера зачетной книжки).

Что понимают под качеством измерений?

Перечислите свойства, определяющие качество измерений.

Что такое точность результатов измерений?

Что такое сходимость результатов измерений?

Что такое воспроизводимость результатов измерений?

Что такое быстрота получения результатов измерений?

Что такое единство измерений?

Перечислите четыре основных принципа единства измерений.

Что является обязательным в обеспечении качества продукции?

От чего зависит качество измерений?

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник