Меню

Как герц измерил скорость электромагнитных волн



В 1888 году Генрих Герц экспериментально подтвердил электромагнитную теорию света Джеймса Максвелла

Генрих Рудольф Герц (нем. Heinrich Rudolf Hertz).

Немецкий физик. Экспериментально подтвердил электромагнитную теорию света Джеймса Максвелла; доказал существование электромагнитных волн.

Родился: 22 февраля 1857, Гамбург.
Скончался: 1 января 1894, Бонн.

В 1888г. вышла фундаментальная работа Герца «Об электродинамических волнах в воздухе и их отражении». Физики всего мира начали воспроизводить опыты Герца и повсюду говорили и писали о «волнах Герца». Заключительная работа цикла «О лучах электрической силы», доложенная Герцем 13 декабря 1888 г. на заседании Берлинской академии наук, произвела подлинную сенсацию. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла.

Для проведения опытов Герц придумал и сконструировал излучатель электромагнитных волн, названный впоследствии «вибратором Герца». Он представлял собой два соосных медных стержня диаметром 5 мм и длиной по 1.3 м; на концах стержней были насажены по одному латунному маленькому (диаметром 3 см) шарику и по одной большой цинковой сфере или полусфере (диаметром 30 см). Между маленькими шариками оставался зазор 7. 7,5 мм — искровой промежуток. К медным стержням вблизи маленьких шариков были прикреплены обмотки катушки Румкорфа — преобразователя постоянного тока низкого напряжения в переменный ток высокого напряжения. При импульсах постоянного тока, вследствие действия прерывателя, в гальванической цепи вторичной обмотки катушки между шариками роскакивали искры и в окружающую среду излучались электромагнитные волны. Перемещением больших сфер (или пластин) вдоль стержней регулировались индуктивность и емкость цепи, определяющие частоты колебаний (и соответственно длины волн).

Для приема излучаемых волн, Герц использовал резонатор, представляющий собой проволочное незамкнутое кольцо диаметром 70 см, с латунными шариками на концах (такими же, как и у «передатчика»). Изменяя размеры и положение резонатора, Герц настраивал его на частоту колебаний вибратора. В результате, между шариками приемника проскакивали искры в тот же самый момент, когда они появлялись шариками вибратора. Искры были очень слабые, поэтому наблюдать за ними приходилось в темноте.

Схема опыта Герца, источник — http://library.brstu.ru/static/bd/istor_ing_dela/personalia/hertz.pdf

Благодаря своим опытам Герц пришёл к следующим выводам:
1. Волны Максвелла «синхронны» (справедливость теории Максвелла, что скорость распространения радиоволн равна скорости света).
2. Можно передавать энергию электрического и магнитного поля без проводов.

Памятник на могиле Герца,
автор: Joern M, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12667795Б

Источник

Экспериментальное обнаружение электромагнитных волн

Опыты Герца

Герц получал электромагнитные волны, возбуждая в вибраторе с помощью источника высокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласованно. В электромагнитной волне векторы и перпендикулярны друг другу. В данном случае вектор лежит в плоскости, проходящей через вибратор, а вектор перпендикулярен этой плоскости. Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора. Вдоль этой оси излучения не происходит.

Электромагнитные волны регистрировались Герцем с помощью приемного вибратора (резонатора), представляющего собой такое же устройство, как и излучающий вибратор. Под действием переменного электрического поля электромагнитной волны в приемном вибраторе возбуждаются колебания тока. Если собственная частота приемного вибратора совпадает с частотой электромагнитной волны, наблюдается резонанс. Колебания в резонаторе происходят с большей амплитудой при расположении его параллельно излучающему вибратору. Герц обнаружил эти колебания, наблюдая искорки в очень маленьком промежутке между проводниками приемного вибратора.

Ученый не только получил электромагнитные волны, но и открыл, что они ведут себя подобно другим видам волн. В частности, он наблюдал отражение электромагнитных волн от металлического листа и сложение волн. При сложении волны, идущей от вибратора, с волной, отраженной от металлического листа, образуются максимумы и минимумы амплитуды колебаний — так называемая интерференционная картина (подробнее об интерференции см. § 67—69). Если перемещать резонатор, можно найти положения максимумов и определить длину волны.

В опытах Герца длина волны составляла несколько десятков сантиметров. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле υ = λν. Она оказалась приближенно равной скорости света: c ≈ 300 000 км/с.

Опытами Герца были блестяще подтверждены предсказания Максвелла.

Для излучения электромагнитных волн нужно создать электромагнитные колебания высокой частоты в открытом колебательном контуре.

Читайте также:  Измерение напряжения стрелочным вольтметром

Вопросы к параграфу

1. Почему обычный (закрытый) колебательный контур нельзя использовать для излучения и регистрации электромагнитных волн?

2. Чему равна скорость распространения электромагнитных взаимодействий?

3. Передающий и приемный вибраторы расположены взаимно перпендикулярно. Возникнут ли колебания в приемном вибраторе?

Источник

Электромагнитные волны

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого элеетрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Закон электромагнитной индукции в трактовке Максвелла

Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε и μ – электрическая и магнитная постоянные:

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Поток энергии в электромагнитной волне можно задавать с помощью вектора, направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

где E – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м 2 ).

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены Петром Николаевичем Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Читайте также:  Твердомер для измерения поверхности

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности (СТО), оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Генриха Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.

Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А.С. Попов, 1895 г.).

7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).

Элементарный диполь, совершающий гармонические колебания

Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.

Излучение элементарного диполя

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Источник

Беспроводные технологии, XIX век. Как Генрих Герц научился передавать электромагнитные волны

Герц жил сразу в двух мирах. С одной стороны — идеальный физик-теоретик, способный на кончике пера строить сложнейшие математические рассуждения. А с другой — талантливый и смелый экспериментатор, лишенный побочных особенностей теоретиков (про великого Льва Ландау рассказывают, что он не умел забить гвоздь в стену и мог не найти обед, оставленный женой в холодильнике) и способный из подручного сора собирать приборы для проверки и воплощения в жизнь абстрактной математики.

Возможно, из-за этой природной разносторонности Герц пришел в физику не сразу. Впечатленный воскресными занятиями в школе искусств и ремесел, на которых изучали черчение, а также столярное и слесарное дело, Герц отказался от прочной семейной карьеры юриста (отец Герца был известным адвокатом) и в 1875 году поступил учиться на инженера в высшее технического училище Дрездена.

Спустя два года он понял, что все равно ошибся с выбором профессии, и отправил родителям письмо со словами: «Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительнее, чем посредственным ученым. А теперь думаю, что Шиллер прав, сказав: «Кто трусит рисковать жизнью, тот не добьется в ней успеха». Родители поддержали сына, и Герц перевелся в мюнхенский университет, где стал изучать физику. Компромиссная карьера инженера и тем более надежная судьба юриста остались в прошлом.

После окончания университета Герц устраивается работать ассистентом в берлинскую лабораторию известного немецкого физика Гельмгольца, и дальше его карьера ускоряется невероятными темпами. Герц за несколько месяцев решает несколько задач, доверенных ему руководителем, и уже 5 февраля 1880 года получает докторскую степень. В его диссертации более ста страниц сложнейших математических выкладок, и следующие пять лет Герц продолжит заниматься теоретической физикой — сначала в Берлине, потом в Кильском университете, где он получит должность доцента.

Читайте также:  Аппараты для измерения давления механические хорошие

Однако это время ученому сложно занести в актив. Герц снова мучается мыслями о неправильном выборе пути, сомневается в своих теоретических результатах, которые кажутся ему случайными успехами на бумаге, и ходит от одной темы к другой. Пятилетка застоя продолжается до 1885 года, когда Герц становится профессором в Карлсруэ и получает полную свободу действий. Он решает проверить теорию электромагнитных волн, сформулированную еще в 1873 году Джеймсом Клерком Максвеллом.

Сегодня уравнения Максвелла, описывающие, как заряды и токи порождают электромагнитные поля, должен знать любой физик, продвинувшийся дальше первых курсов университета, но 130 лет назад все было по-другому. Физикой правила концепция дальнодействия, по которой тела могли мгновенно взаимодействовать друг с другом прямо через пустоту, и потому электромагнитные волны, напрямую вытекающие из уравнений Максвелла и распространяющиеся сквозь пространство только с конечной скоростью, очень смущали ученых, в том числе и самого Герца, который в свою бесплодную пятилетку безуспешно пытался найти слабости теории Максвелла.

Экспериментальная мысль Герца двинулась другим путем. В подсобке физического кабинета он находит все необходимое, чтобы собрать простое устройство для проверки существования электромагнитных волн. Оно состояло из двух частей — передатчика, который позже назовут «вибратором Герца», и приемника.

Первый вибратор Герца представлял собой два медных стержня диаметром несколько миллиметров, на концах которых было закреплено по одному большому цинковому и одному маленькому латунному шарику. Эти стержни были сонаправлены друг к другу концами с латунными шариками так, что между ними оставался небольшой зазор в несколько миллиметров, а шарики цинковые играли роль конденсаторов. Также к медным стержням вблизи маленьких шариков были подведены обмотки электрической схемы, выдающей переменный ток высокого напряжения.

Резонатор Герца был незамкнутым кольцом диаметром 70 см с точно такими же латунными шариками на концах и таким же зазором. При генерации напряжения в щели вибратора проскакивала искра, и в пространство излучались электромагнитные волны, которые доходили до удаленного резонатора, чтобы выбить искру уже там и возбудить электрические колебания.

Дальше Герц подбирал размеры резонатора, стержней, шариков и зазоров между ними и тем постепенно улучшал систему: сонастраивал колебательные контуры вибратора и резонатора, повышал частоту возбужденного тока. Однако сначала реакция ученого на свои результаты была сдержанной: Герц начал опыты в конце октября 1886 года, а в ноябре аккуратно писал у себя в дневнике: «Мне посчастливилось установить индукционное действие друг на друга двух незамкнутых цепей с током». Ни о каких электромагнитных волнах и тем более верности теории Максвелла речи тогда еще не шло.

Следующие эксперименты заставили Герца пересмотреть свои взгляды: постепенно он обнаружил, что эта загадочная субстанция, передающая электрические колебания, ведет себя так же, как свет. Ученый добавлял в систему экраны, зеркала и решетки и сталкивался с уже известными в оптике явлениями вроде преломления или интерференции. Когда же ему удалось посчитать скорость распространения электрического возбуждения от вибратора к резонатору, совпавшую со скоростью света, Герцу ничего не оставалось, кроме как отвергнуть прошлые убеждения — поступок мучительно героический и характеризующий его как ученого лучше самой сложной математики и прекрасного практического ума.

В результате в докладе на съезде немецких естествоиспытателей в 1889 Герц подводит итог экспериментов следующими словами: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла… Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».

Три года упорных экспериментов (масштабы времени, абсолютно крошечные в науке, особенно современной) не только перевернули представления о дальнодействии электромагнетизма, но и подкосили здоровье самого Герца. В 1892 году у него диагностируют заражение крови, а в 1894 году физик умирает в возрасте 37 лет. Год спустя, 7 мая 1895 года, Александр Попов показывает свой первый прототип радио — устройства, родившегося из тусклых искр в экспериментах Герца и научившего людей по всему миру мгновенно общаться друг с другом посредством электромагнитных волн.

Источник