Меню

Как измерить давление пласта



Пластовое давление

Обычно прогноз пластового давления основан на предположении о том, что оно изменяется строго пропорционально глубине скважины, причем коэффициент пропорциональности называют часто коэффициентом (индексом) аномальности ka:

где rв плотность воды, кг/м 3 ,

lпл– глубина расположения пласта (в наклонно направленных скважинах вместо глубины по стволу берут вертикальную проекцию ствола на данной глубине.), м.

Тогда получается, что для определения пластового давления вполне достаточно знать только величину ka для различных интервалов бурения. Обычно принимают, что для некоторого интервала бурения ka величина постоянная. Однако то обстоятельство, что для всех интервалов бурения расчет пластового давления ведут с помощью формулы (1.1), представляющей собой уравнение прямой, исходящей их начала координат, означает, во-первых, что линии пластовых давлений являются отрезками прямых, а во-вторых, продолжения этих отрезков образуют лучи, исходящие из устья скважины.

На рис. 1 показаны четыре луча, соответствующие разным значениям индекса пластового давления ka . У луча 0а оно минимально, а у луча 0g – максимально. На глубине Lа изменяется индекс аномальности ka , и линия скачком переходит на другой луч и так далее. В результате образуется ломаная линия abcdefghi, включающая горизонтальные участки ab, cd, ef, hg. Известны случаи локального роста пластового давления на некотором интервале бурения (по сравнению с соседними пластами) с последующим возвратом на прежний (или близкий к прежнему) уровень давлений. На рис. 1. этому соответствует участок efghi.

Такой упрощенный, хотя и популярный в практике проектирования скважин, метод прогнозировании пластового давления привносит в расчеты значительные ошибки, особенно в верхних интервалах разреза и при расчетах давления для пластов с аномально высоким пластовым давлением (АВПД). Но прежде чем перейти к обсуждению более точных методов прогнозирования пластовых давлений дадим определение понятия градиент пластового давления qпли сравним его с коэффициентом аномальности ka .

Величина qпл, в строгом смысле, характеризует изменение пластового давления в пределах некоторого интервала бурения или пласта, приходящееся на единицу длины (как правило, это 1 м) и вычисляется по формуле:

где pпл2 и pпл1 – пластовые давления соответственно на глубинах L2и L1 (например, в подошве и кровле пласта).

Если обнаружится, что для любых двух глубин в пределах данного интервала бурения (пласта) величина qпл постоянна (одна и та же), то это будет означать, что пластовое давление изменяется по линейному закону.

Но это совсем не означает, что продолжение прямой пройдет точно через устье скважины, как это имеет место на рис. 1. И здесь возможны варианты (рис. 2):

1. Участок 0′ a отражает изменение рпл в верхней части разреза, насыщенной пресными или маломинерализованными водами со статическим уровнем пластовой воды в скважине, как правило, ниже уровня земли («сухой» отрезок 0-0′). Предположим теперь, что каким-то образом удалось замерить пластовые давления в точках a’ и a. Вычисляя теперь по формуле (1.1) коэффициенты аномальности ka (при известных давлениях и глубинах), мы бы получили разные величины ka для указанных глубин (прямые 0а и 0а’ не совпадают). Но выше мы только что доказали, что наличие линейной связи между давлением и глубиной автоматически означает постоянство градиента давления. В этих условиях применение формулы (1.1) с коэффициентом ka, найденным по глубине La, приведет к завышению рпл для всех глубин, меньших La.

2. Если продолжение прямой линии пластового давления (прямая 0 с на рис. 2) проходит через устье скважины, то имеет место частный случай постоянства ka и qпл на всем интервале бурения. При этом расчеты по формуле (1.1) будут тоже точными.

3. Продолжение прямой пластовых давлений может пройти и выше устья (прямая 0″ е на рис. 2). Это может быть, например, в случае, когда высота области питания для данного водоносного горизонта находится намного выше того места, где бурится скважина (геологических причин формирования АВПД множество. Указанная причина — одна из возможных.). Расчет по формуле (1.1) будет отягощен ошибками, как и в случае 1, так как коэффициент аномальности, в отличие от градиента давления, будет переменным по длине интервала бурения.

4. Продуктивная толща газовых месторождений и некоторых, например, Прикаспийских, имеют большую протяженность (несколько сотен метров), и отдельные проницаемые участки (коллектора) имеют между собой гидродинамическую связь в вертикальном направлении. Такие залежи месторождений называют массивными. Пластовое давление в пределах продуктивных пластов распределяется не пропорционально глубине, а в соответствии с плотностью флюида в пластовых условиях. В продуктивной части газового месторождения – в зависимости от плотности сжатого газа, в нефтяных – от плотности нефти в пластовых условиях. На рис. 2 прямая fg иллюстрирует распределение давления в газовой залежи. Считается, что в подошве залежи давление близко к давлению в водоносных пластах на соответствующей глубине, зато в кровле оно существенно больше «нормального» и воспринимается как АВПД. Для таких случаев прогнозный расчет по формуле (1.1) в принципе возможен только для подошвы залежи. Что касается давления в кровле, то оно определяется по формулам (соответственно для газа и нефти):

где pпд и pкр – пластовое давление в подошве и в кровле пласта;

bг — относительная сжимаемость природного газа;

rн— плотность нефти в пластовых условиях;

Читайте также:  Измерение сопротивления изоляции разрешение

Lпд и Lкр — глубины расположения подошвы и кровли пласта соответственно.

Для многопластовых месторождений нефти, когда каждый нефтеносный пласт может рассматриваться как самостоятельная залежь малой мощности (единицы метров) с собственным водонефтяным контактом, в пределах нефтеносной части распределение тоже будет по закону, описанному формулой (1.4). Однако, в связи с малой мощностью пластов, описанным эффектом аномальности в кровле пренебрегают, и пластовые давления определяют либо по формуле (1.1), либо через градиент давления qпл, если известно давление для одной из глубин в пределах рассматриваемого интервала бурения.

На линии пластовых давлений выделяются горизонтальные площадки, что свидетельствует о скачкообразном изменении пластового давления при достижении определенных глубин. Если подходить формально, то получается, что в одной точке пласта существуют два давления, что абсурдно. Все дело в том, что в реалии переход от одного давления к другому происходит не сразу, а на некотором, относительно коротком (в несколько метров) интервале. Вследствие малости интервала переход на новое давление показывают в виде ступенек.

Существует еще один способ оценки пластового давления и его изменения, суть которого сводится к определению эквивалентной плотности жидкости, которая, находясь (условно) в скважине от рассматриваемой точки пласта на глубине Li до устья, создает гидростатическое давление, численно равное пластовому на данной глубине:

Понятие «эквивалентная плотность» применяется не только к пластовому давлению, но используется и для описания всех других давлений, представленных в ТПД: гидростатического, давления гидроразрыва и горного. Вычисляются они по формуле (1.5) с заменой числителя на значения соответствующих давлений.

А теперь сравним размерности и величины параметров ka , qпл , rэкв , которые служат исключительно для оценки уровня давлений и их изменения с глубиной скважины.

Из формулы (1.1) следует, что коэффициент ka — величина безразмерная. Он призван показать, во сколько раз пластовое давление превышает давление столба воды на той же глубине в предположении, что скважина полностью ею заполнена (условно, конечно). Нередко величина ka превышает 1,8, что требует применения утяжеленных растворов соответствующей плотности.

Предположим, что в кровле пласта на глубине 2000 м пластовое давление оказалось равным 21,6 МПа, а в подошве, на глубине 2500 м – 27 МПа.

— коэффициент аномальности ka = 21,6*10 6 / (1000*9,81*2000)=1,1 (на глубине 2000 м),

— коэффициент аномальности ka = 27*10 6 / (1000*9,81*2500)=1,1 (на глубине 2500 м),

— градиент пластового давления в интервале 2000-2500 м:
qпл = (27-21,6)/ (2500-2000) = 0,0108 МПа/м,

— эквивалентная плотность по пластовому давлению на глубине 2500 м:
rэкв = 27*10 6 / (9,81*2500) = 1100 кг/м 3 .

По величинам ka иrэкв можно заключить, что пластовые давления в указанном интервале на 10 % превышают давление воды с плотностью 1000 кг/м 3 .

Приближенный, но весьма распространенный метод прогнозирования пластового давления, предполагает использование формулы (1.1).

Более строгий метод расчета пластового давления предусматривает точное знание давления на одной из глубин в пределах пласта (интервала бурения), например, прямым измерением глубинными манометрами, и расчет давления для других глубин с использованием величины градиента давления(По определению пластовое давление – фактор природный, и его величина в принципе не может зависеть от человека. Однако бывает пластовое давление «рукотворным». Например, в результате добычи нефти имеет место уменьшение давления в продуктивных пластах. При закачке в пласт жидкости или газа для восстановления пластовой энергии оно, наоборот, увеличивается и может превысить первоначальное давление. ).

Изменение пластового давления в зависимости от глубины можно отобразить с помощью графика «глубина — эквивалентная плотность».

Источник

ПЛАСТОВОЕ ДАВЛЕНИЕ

ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗАЛЕЖЕЙ НЕФТИ И ГАЗА

Все залежи УВ обладают большим или меньшим запасом различных видов энергии для перемещения нефти и газа к забоям скважин. Потенциальные возможности залежей в этом плане зависят от разновидностей природных режимов залежей. В проявлении режимов большое место занимают значение начального пластового давления и поведение давления в процессе разработки.

Различают два вида давления в земной коре – горное и гидростатическое.

Горное давление – создается суммарным действием на породы геостатического и геотектонического давления.

Геостатическим называется давление вышележащих горных пород (от поверхности земли до точки замера).

Геотектоническое давление – отражение напряжений, создаваемых в земной коре различными непрерывно-прерывистыми тектоническими процессами.

Под пластовым понимают давление, при котором в продуктивном пласте нефть, газ, вода, а в водоносном – вода находятся в пустотах пластов-коллекторов.

Если вскрыть скважиной водоносный пласт-коллектор и снизить в ее стволе уровень промывочной жидкости, то под действием пластового давления в эту скважину из пласта начнет поступать вода. Ее приток прекращается после того, как столб воды уравновесит пластовое давление.

Аналогичный процесс – поступление в скважину нефти.

Следовательно, пластовое давление может быть определено по высоте столба пластовой жидкости в скважине при установлении статического равновесия в системе пласт-скважина: Рпл = h×r×g,

де h – высота столба жидкости, уравновешивающего пластовое давление, м; r – плотность жидкости в скважине, кг/м 3 ; g ускорение свободного падения, м/с 2 .

При практических расчетах формулу используют в следующем виде: Рпл = h×r/с,

где С – коэффициент, равный 102 при измерении давления в МПа.

Устанавливающийся в скважине уровень жидкости, соответствующий пластовому давлению, называют пьезометрическим уровнем. Его положение фиксируют расстоянием от устья скважины.

Читайте также:  Система си единицы измерения мпа

Поверхность, проходящая через пьезометрические уровни в различных точках водонапорной системы (в скважинах), называют пьезометрической поверхностью.

Высоту столба жидкости h в формуле обычно определяют как расстояние от пьезометрического уровня до середины пласта коллектора – такой столб жидкости h1 называют пьезометрической высотой.

Пьезометрическим напором называют столб жидкости высотой h2 = h1 + z, где z – расстояние между серединой пласта и условной плоскостью.

Давление, соответствующее пьезометрической высоте, называют абсолютным пластовым давлениемпл.а).

Давление, соответствующее пьезометрическому напору, – приведенным пластовым давлением пл.пр).

(Т. Е. Приведенное пластовое давление – это давление, замеренное в скважине и пересчитанное на условно принятую горизонтальную плоскость.)

Зная расстояние z и плотность жидкости в скважине r, всегда можно перейти от абсолютного пластового давления к приведенному (и наоборот):

В скважинах с устьями выше пьезометрической поверхности (скв1) абсолютное пластовое давление можно определить, зная глубину скв. Н1 до середины пласта и глубину пьезометрического уровня от устья скважины h1, плотность воды rв (она обычно больше 1(см таб.) вследствие того, что пластовые воды минерализованы):

В скважинах с устьями, совпадающими с пьезометрической поверхностью (скв2):

Скважины с устьями ниже пьезометрической поверхности (скв 3) будут фонтанировать. Пластовое давление в таких скважинах можно определить, замерив манометром давление pу на их устьях:

rв = 1 г/см 3 rпл.вода ≈ 1,05 г/см 3
rглин. ра-ра ≈ 1,12 г/см 3 rвозд. ≈ 0,12 г/см 3
rгаза ≈ 0,06 г/см 3 rн ≈ 0,86 г/см 3
rбензин ≈ 0,72 г/см 3

Распределение пластовых давлений в скважинах, встречающих продуктивный пласт на различных гипсометрических отметках.

Антиклинальная складка, залежь нефти с газовой шапкой. Продуктивный пласт выходит на дневную поверхность на отметке +300 м. предположим, что плотность пластовой воды rв = 1,02 г/см 3 , плотность нефти rн ≈ 0,8 г/см 3 иплотность газа к воздуху rгаза ≈ 0,7 г/см 3 .

Определим величины пластовых давлений в пяти пробуренных скважинах.

Скв. 1 вскрыла краевую воду на глубине 2150 м. Статический уровень находится на 200 м. ниже устья. Пластовое давление на забое (т. В) составит:

Статический столб в скважине 1950 м.

Скв. 2 пробурена на крыле складки и вскрывает залежь нефти на глубине 2050 м. Альтитуда скважины равна 650 м. Пластовое давление на забое (т. С) будет меньше, чем в точке В, на величину противодавления, оказываемого столбом жидкости, равным разности абсолютных отметок глубин залегания точек В и С, т.е.

Тогда давление в точке С будет

Статический столб нефти в скв. 2 должен уравновешивать вычисленное значение давления на забое, т.е. он должен быть равен:

Однако глубина скважины оказывается меньше вычисленного значения статического столба и, следовательно, скважина будет фонтанировать.

При вскрытии скважины давление на ее устье будет

Скв. 3 вскрыла газовую шапку на абсолютной отметке -600 м. Давление в точке D, соответствующей забою этой скважины, определяется путем вычитания из пластового давления в точке С противодавления столба нефти, равного 300 м., и противодавления столба газа, равного 500 м.

Столб нефти оказывает противодавление

Плотность газа по отношению к воде при давлении, равном давлению на газонефтяном контакте

17.0 – 2,4 = 14,6 МПа, и коэффициент сжимаемости

Z = 0.78 составит

Тогда противодавление столба газа будет равно

Отсюда давление в точке D составит:

Если бы весь пласт был заполнен водой, то давление в точке D составляло бы

Таким образом, давление в наиболее приподнятой части газовой шапки превышает гидростатическое на 14,1-9,0 = 5,1 МПа и градиент давления для глубины 900 м. будет равен

Скв. 4, вскрывшая пласт на контакте газ-нефть, имеет забойное давление, как мы уже высчитали, 14,9 МПа. Высота статического столба нефти

Так как глубина скважины равна 1300 м., то скважина будет фонтанировать нефтью. При закрытии скважины давление на ее устье будет

В скв. 5 забой находится на отметке -1650 м., так же как и в скв. 1. следовательно, и давление на ее забое будет равно 19,5 МПа. Статический уровень должен установиться на высоте 1950 м. от забоя.

В связи с тем, что глубина скв. 5 составляет 1800 м., скважина будет переливать (фонтанировать) воду. При ее закрытии давление на устье составит

Таким образом, при данном гидростатическом напоре в различных точках продуктивного пласта устанавливаются различные пластовые давления.

На рисунке приведена схема инфильтрационной водонапорной системы с приуроченной к ней газонефтяной залежью.

Рис. 48. Схема распределения пластового давления рпл и пьезометрических высот в районе расположения нефтегазовой залежи: 1 – вода; 2 – нефть; 3 –газ; поверхности: 4 – пьезометрическая, 5–земная; ру — давление на устье скважины

Область питания водонапорной системы расположена на абсолютной отметке 100 м. Общая высота приуроченной к этой системе газонефтяной залежи 400 м, отметки ВНК – 700 м, ГНК – 400 м, кровли пласта в своде залежи – 300 м.

Проследим распределение начальных значений пластового давления и пьезометрической высоты в пласте в районе залежи.

Примем, что плотность пластовых вод, нефти и газа (в г/см 3 ) соответственно равна: рв = 1,0, рн = 0,85, рг = 0,1 г/см 3 .

В водяной скв. 1 пьезометрическая высота hв = 600 м. Соответственно рпл1 = hв рв /102 = (600*1,0)/102 = 5,88 МПа.

Читайте также:  Что нужно сделать если точность измерения не устраивает исследователя

В водяной скв. 4 при пьезометрической высоте hв = 900 м рпл4 = 900*1,0/102 = 8,82 МПа; рпл1 водонапорных системах и залежах пользуются вертикальным градиентом пластового давления grad p, отражающим величину изменения pпл на 1 м глубины скважины: grad p = pпл/Н.

Из рисунка видно, что на величину grad p в различных скважинах влияние оказывает разность абсолютных отметок пьезометрической поверхности и устьев скважин. В скважинах, устья которых находятся выше пьезометрической поверхности, значения grad p меньше, а в скважинах, устья которых находятся ниже этой поверхности, значения grad p больше по сравнению с его значениями в скважинах, устья которых совпадают с пьезометрической поверхностью.

Градиент пластового давления имеет значения от 0,008 до 0,025 МПа/м и иногда более.

Его величина зависит от характера водонапорной системы, взаимного расположения поверхности земли и пьезометрической поверхности.

Природной водонапорной системой называют систему гидродинамически сообщающихся между собой пластов-коллекторов и трещинных зон с заключенными в них напорными водами, которая характеризуется едиными условиями возникновения подземных вод.

В пределах каждой водонапорной системы могут быть выделены три основных элемента:

· область питания – зоны, в которых в систему поступают воды, за счет чего создается давление, обусловливающее движение воды;

· область стока – основная по площади часть резервуара, где происходит движение пластовых вод;

· область разгрузки – части резервуара, выходящие на земную поверхность или расположенные в недрах (например, связанные с дизъюнктивным нарушением), в которых происходит разгрузка подземных вод.

Природные водонапорные системы подразделяют на инфильтрационные и элизионные (рис. ). Залежи УВ, приуроченные к водонапорным системам указанных видов, обычно обладают различными по величине значениями начального пластового давления при одинаковой глубине залегания продуктивных пластов.

· является «открытой», т.е. сообщается с земной поверхностью в областях как разгрузки, так и питания;

· область питания системы расположена гипсометрически выше области разгрузки;

Классификация геогидродинамических систем

· природный резервуар пополняется атмосферными и поверхностными водами.

· движение жидкости в пласте-коллекторе происходит в основном в соответствии с влиянием гравитационных сил в сторону регионального погружения пластов.

· пьезометрическая поверхность системы (с плотностью пресной воды -1 г/см 3 ) представляется в виде наклонной плоскости, соединяющей области питания и разгрузки.

· в инфильтрационных водонапорных системах начальное пластовое давление возрастает практически пропорционально увеличению глубины залегания водоносных пластов.

· инфильтрационные водонапорные системы наиболее характерны для древних платформ.

· Значение начального пластового давление ниже значений геостатического, т.е. давления на пласт массы вышележащей толщи пород.

В зависимостиот степени соответствияначального пластового давленияглубинезалеганияпластов-коллекторов выделяют две группы залежей УВ:

Ø залежи с начальным пластовым давлением,соответствующим гидростатическому давлению;

Ø залежи с начальным пластовым давлением,отличающимся от гидростатического.

В геолого-промысловой практике принято называть залежи первого вида залежами с нормальным пластовым давлением, второго вида – залежами с аномальным пластовым давлением. Подобное разделение следует считать условным, так как любое значение начального пластового давления связано с геологическими особенностями района и для рассматриваемых геологических условий является нормальным

Каждая залежь УВ имеет некоторое природное пластовое давление. В процессе разработки залежи пластовое давление обычно снижается, соответственно, различают начальное (статическое) и текущее (динамическое) пластовое давление.

Начальное пластовое давление – это давление в пласте-коллекторе в природных условиях, т.е. до начала извлечения из него жидкостей или газа.

Гидростатическим пластовым давлением (ГПД) называют давление в пласте-коллекторе, возникающее под действием гидростатической нагрузки вод, перемещающихся по этому пласту в сторону его регионального погружения.

В водоносном пласте начальное пластовое давление считают равным гидростатическому, когда соответствующая ему пьезометрическая высота в каждой его точке примерно соответствует глубине залегания пласта. Пластовое давление, близкое к гидростатическому, характерно для инфильтрационных водонапорных систем и приуроченных к ним залежей.

За пределами залежей нефти и газа, т.е. в основной по площади водоносной части инфильтрационных систем, значение вертикального градиента пластового давления обычно не выходит за пределы 0,008 – 0,013 МПа/м и в среднем составляет около 0,01 МПа/м. Редкие исключения могут быть обусловлены весьма резким различием абсолютных отметок устьев скважин и пьезометрической поверхности.

В инфильтрационных водонапорных системах начальное пластовое давление возрастает практически пропорционально увеличению глубины залегания водоносных пластов-коллекторов. Его значения всегда намного ниже значений геостатического давления, т.е. давления на пласт массы вышележащей толщи пород.

В инфильтрационных системах вертикальный градиент пластового давления залежей нефти и газа, даже с учетом избыточного давления, обычно не выходит за указанные пределы 0,008 – 0,013 МПа/м. Верхний предел обычен для газовых залежей большой высоты. Иногда в свободной части газовой залежи, приуроченной к инфильтрационной системе, значение градиента может выходить за названный предел. Повышенное пластовое давление в сводовых частях залежей инфильтрационных водонапорных систем не следует смешивать со сверхгидростатическим давлением.

О соответствии или несоответствии пластового давления гидростатическому (т.е. глубине залегания пласта) следует судить по значению давления в водоносной части пласта непосредственно у границ залежи или, если замеров давления здесь нет, по значению давления, замеренного в пределах залежи и приведенного к горизонтальной плоскости, соответствующей средней отметке ВНК или ГВК.

Залежи с начальным пластовым давлением,

Источник