Меню

Как измерить длину диаметра 6 класс



Как найти диаметр окружности

О чем эта статья:

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу.

Если говорить проще, окружность — это замкнутая линия, как, например, обруч и велосипедное колесо. Круг — плоская фигура, ограниченная окружностью, как апельсин и тарелка.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней.

Записывайтесь на курсы по математике для учеников с 1 по 11 классы.

Как узнать диаметр. Формулы

В данной теме нам предстоит узнать четыре формулы:

  1. Общая формула. Исходя из основных определений нам известно, что значение диаметра равно двум радиусам: D = 2 * R, D — диаметр, где R — радиус.
  1. Если перед нами стоит задача найти диаметр по длине окружности:

D = L : π, где L — длина, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Чтобы получить правильный ответ, можно поделить столбиком или использовать онлайн калькулятор.

  1. Если известна площадь круга:

D = 2 * √(А : π), где А — площадь.

Для проверки можно всегда воспользоваться формулой для поиска площади круга: A = π * r 2 .

  1. Если есть чертеж окружности:
  • Начертить внутри круга прямую горизонтальную линию. Ее месторасположение не играет значительную роль.
  • Отметить точки пересечения прямой и окружности.
  • Начертить при помощи циркуля две окружности, первую — с центром в точке A, вторую — с центром в точке B.
  • Провести прямую через две точки, в которых произошло пересечение. Диаметр равен этому отрезку.
  • Теперь осталось измерить диаметр круга при помощи линейки. Получилось!

Эти простые формулы могут пригодиться не только на школьных уроках, а также, если вы решите освоить профессию дизайнера интерьера, архитектора или модельера одежды. Также ты можешь прочитать — как найти длину окружности?

Легко ориентироваться в математических понятиях и решать задачки с азартом помогут в детской школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.

Запишите ребенка на бесплатный пробный урок математики в Skysmart: определим пробелы в знаниях и расскажем, как наверстать упущенное — весело и в удовольствие.

Источник

Длина окружности

О чем эта статья:

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Как найти длину окружности через диаметр

Диаметр — отрезок, который соединяет две точки окружности и проходит через её центр. Формула длины окружности через диаметр:

π— число пи — математическая константа, равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

Читайте также:  Единица измерения лампы накаливания

π — число пи, равное 3,14

r — радиус окружности

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она всегда равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и захватывающие математические игры и головоломки. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.

Источник

Длина окружности

Возьмем циркуль. Установим ножку циркуля с иглой в точку « O », а ножку циркуля с карандашом будем вращать вокруг этой точки. Таким образом, мы получим замкнутую линию. Такую замкнутую линию называют — окружность.

Читайте также:  Мах единица измерения чего

Рассмотрим более подробно окружность. Разберёмся, что называют центром, радиусом и диаметром окружности.

  • (·)O — называется центром окружности.
  • Отрезок, который соединяет центр и любую точку окружности, называется радиусом окружности. Радиус окружности обозначается буквой « R ». На рисунке выше — это отрезок « OA ».
  • Отрезок, который соединяет две точки окружности и проходит через её центр, называется диаметром окружности.

Диаметр окружности обозначается буквой « D ». На рисунке выше — это отрезок « BC ».

На рисунке также видно, что диаметр равен двум радиусам. Поэтому справедливо выражение « D = 2R ».

Число π и длина окружности

Прежде чем разобраться, как считается длина окружности, необходимо выяснить, что такое число π (читается как «Пи»), которое так часто упоминают на уроках.

В далекие времена математики Древней Греции внимательно изучали окружность и пришли к выводу, что длина окружности и её диаметр взаимосвязаны.

Отношение длины окружности к её диаметру является одинаковым для всех окружностей и обозначается греческой буквой π («Пи»).
π ≈ 3,14…

Число «Пи» относится к числам, точное значение которых записать невозможно ни с помощью обыкновенных дробей, ни с помощью десятичных дробей. Нам для наших вычислений достаточно использовать значение π ,
округленное до разряда сотых π ≈ 3,14…

Теперь, зная, что такое число π , мы можем записать формулу длины окружности.

Длина окружности — это произведение числа π и диаметра окружности. Длина окружности обозначается буквой « С » (читается как «Це»).
C = π D
C = 2 π R , так как D = 2R

Как найти длину окружности

Чтобы закрепить полученные знания, решим задачу на окружности.

Виленкин 6 класс. Номер 831

Найдите длину окружности, радиус которой равен 24 см. Число π округлите до сотых.

Воспользуемся формулой длины окружности:

C = 2 π R ≈ 2 · 3,14 · 24 ≈ 150,72 см

Разберем обратную задачу, когда мы знаем длину окружности, а нас просят найти её диаметр.

Виленкин 6 класс. Номер 835

Определите диаметр окружности, если её длина равна 56,52 дм. ( π ≈ 3,14 ).

Выразим из формулы длины окружности диаметр.

Хорда и дуга окружности

На рисунке ниже отметим на окружности две точки « A » и « B ». Эти точки делят окружность на две части, каждую из которых называют дугой. Это синяя дуга « AB » и черная дуга « AB ». Точки « A » и « B » называют концами дуг.

Соединим точки « A » и « B » отрезком. Полученный отрезок называют хордой.

Точки « A » и « B » делят окружность на две дуги. Поэтому важно понимать, какую дугу вы имеете в виду, когда пишите дуга « AB ».

Для того чтобы избежать путаницы, часто вводят дополнительную точку на нужной дуге и обращаются к ней по трем точкам.

Источник

Длина окружности и площадь круга. Формулы и примеры.

Начнем с того, что определим окружность , как замкнутую плоскую кривую, состоящую из всех точек на плоскости, которые равноудалены от заданной точки. Эта заданная точка является центром окружности . Прямой отрезок, который проходит через центр окружности и соединяет 2 точки на ее границе, называется диаметром . А радиусом будет являться прямой отрезок, которые соединяем точку на границе окружности и ее центр.

Так как окружность – это граница круга, то длина окружности является частным случаем периметра.

Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽ . Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф

Длина окружности круга

Множество точек удаленных от центра круга на расстояние, не превышающее радиус круга, называется кругом. Отношение длины любой окружности C к ее диаметру d всегда будет равно одному и тому же числу. Это число – всем известное число π («пи»), которое примерно равно 3,14. Так же, справедлива формула определения числа π , как отношение длины окружности C к двум ее радиусам r . Исходя из этого, выводится формула длины окружности C , которая равна произведения числа π и диаметра d окружности или 2-м ее радиусам r .

Для примера решим простую задачу, где нужно найти длину окружности, у которой известен радиус r =2 см.

Подставляем известные данные в формулу длины окружности и получаем, что длина окружности примерно равна 12,56 см.

Площадь круга

Площадь круга S, как и длина окружности, вычисляется с помощью константы π и радиуса окружности r .

Так же можно получить значение площади S круга с помощью диаметра d .

Источник

Как рассчитать диаметр окружности, зная ее длину

Отправим материал на почту

Расчет диаметра круга легко произвести, зная другие параметры геометрической фигуры. Если информация о длине (P) доступна, искомое значение (D) быстро находится благодаря одной формуле D=P/π, где π — число Пи, бесконечное, кратко выражаемое как 3,14.

Определение

Диаметром круга принято считать размер прямой, соединяющей две любые точки на окружности и проходящей при этом через ее центр. Его также можно описать, как два радиуса, расположенные под углом 180° по отношению друг к другу.

Определение параметра вручную

Если значение величины кривой не выставлено, измерить искомый параметр можно непосредственно на чертеже.

  • Внутри замкнутой кривой чертят прямую линию, пересекающую ее в двух местах.
  • Вокруг полученных «опор» с помощью циркуля чертят две новые пересекающиеся между собой окружности одинакового размера, примерно равные исходной.
  • Между точками пересечения новых фигур проводят соединяющую их линию.

Искомый показатель будет равняться длине отрезка между точками, появившимися на исходной замкнутой кривой как результат ее пересечения с выполненной в третьем пункте прямой линией.

Заключение

Быстро рассчитывать необходимые размеры геометрических тел можно с применением как формул, так и качественно составленных чертежей. Для этого важно всегда иметь под рукой базовый набор инструментов.

Источник