Как измерить импеданс колонок

старая тема как померить сопротиввление колонок ?

старая тема как померить сопротиввление колонок ?

Re: старая тема как померить сопротиввление колонок ?

народ HELP КАК ПОМЕРИТЬ СОПРОТИВЛЕНИЕ

Точности обычного китайского тестера достаточно для таких измерений.

По моему, не надо морочить человеку голову, он задал простой вопрос и отвечать ему надо аналогично. Усилители разрабатывают не идиоты, они уже заране расчитываются на работу с комплексной нагрузкой.
Задача была измерить сопротивление акустики. Чтобы не дать человеку совершить грубую ошибку. Точно измерить номинальное сопротивление своей акустики он все равно не сможет. А точности измерений по постоянному току для этого вполне достаточно, китайский тестер он тоже в состоянии найти, купить или взять на прокат у соседа. Этого достаточно чтобы понять, можно включать данную акустику к усилителю или нет.

Дело не в правоте, написано все правильно, но еще раз: А нахрена ему знать про полный импеданс, что от этого измениться и главное, как он это будет его проверять, если напугается и начнет спрашивать как измерять, лично мне непонятно?

2Aleksander

Я так понял, уважаемый, про заморачиване головы у г-на Римских, это в мой огород камень?

Тогда, если не слишком затруднительно, ответьте где я был не прав, когда сказал, что величина сопротивления по постоянному току для акустических систем с заявленным произодителем сопротивлением 8 Ом будет приблизительно 6-6.5 Ом?

Про полный импеданс это, конечно, в качестве дополнительных знаний, но по существу

Дело не в правоте, написано все правильно, но еще раз: А нахрена ему знать про полный импеданс, что от этого измениться и главное, как он это будет его проверять, если напугается и начнет спрашивать как измерять, лично мне непонятно?

Хорошо, у акустики с полным импедансом 8 ом активное сопротивление может быть и 2.5 и 6, что с этими цифирьками делать если усилитель расчитан на 8 полного?

Сколько покажет индикатор, это и есть сопротивление.

Не верь. Это минимальное сопротивление. А тебе интересно среднее по всему диапазону.

Акустические системы — Сопротивление

Входной импеданс, т.е. полное, активное и индуктивное сопротивление акустической системы меняется по сложному закону в зависимости от частоты воспроизводимого сигнала. Чем больше это сопротивление, и чем ближе друг к другу его значения при разных частотах сигнала, тем более легкой нагрузкой эта АС является для усилителя.

Номинальный импеданс означает некое усредненное значение импеданса. Чем он выше, тем легче усилителю управлять данной АС, однако, не следует забывать, что резкие провалы импеданса на определенных частотах весьма нежелательны. Поэтому иногда в характеристиках указывается минимальное значение импеданса.

При малом импедансе АС усилитель вынужден отдавать в нее большую мощность. Тогда может произойти перегрузка усилителя (особенно, если он питает одновременно два комплекта АС). Поэтому, если у Вас уже есть усилитель, то, выбирая АС, следует выяснить, на какой номинальный импеданс нагрузки он рассчитан. Некоторые усилители с высоким выходным током легко питают 2-Омные АС, у других же наступает перегрузка уже при 6 Ом.

Включить тестер, поставить переключатель в положение 200 римская буква омега. Щупы тестера подключить к клеммам акустической системы. Сколько покажет индикатор, это и есть сопротивление.
От усилителя акустика должна быть отключена. Измерение выходной мощности усилка это другая тема, сейчас нам это не требуется.

сделал как вы сказали но тестер показывае значение буквально на секунду и каждый раз разное а так постоянные нули

Это не режим измерения сопротивления.
Найдите положение переключателя 20К, ниже его должно быть 2000 можно измерять здесь. Где-то рядом должна быть нарисована римская буква Омега.
Показания должны быть стабильны.

померил значение 5.65 похожн как не прискорбно но не подходят колонки

Это не режим измерения сопротивления.
Найдите положение переключателя 20К, ниже его должно быть 2000 можно измерять здесь. Где-то рядом должна быть нарисована римская буква Омега.
Показания должны быть стабильны.

померил значение 5.65 похожн как не прискорбно но не подходят колонки

Это значит что сопротивление гарантировано больше 6. Годятся.

Источник

Измерение импеданса и расчет параметров ТС с Arta Software

Сложность измерений электрических и акустических параметров динамиков часто подталкивает на отказ от данной процедуры и в последствии процесс создания АС происходит с ориентиром на простые формулы расчета, учитывающие только электрические параметры динамиков, да и то идеальных. Думаю, нет смысла лишний раз углубляться в рассказы о том, что результат в таком случае даже близко не оправдывает ожидания. Лукавить не буду, процесс измерений сложен, требует некоторого специального оборудования и, что очень важно, навыков работы с программами для проведения измерений. Мало просто измерить, нужно сделать это максимально объективно, и единственным ограничением при измерениях должна оставаться погрешность измерительного оборудования.

Далее я постараюсь подробно рассказать о методике проведения измерений в пакете Arta Software. Эту программу я полюбил за удобство и легкость в работе, возможность всестороннего анализа результатов измерений. Последняя версия программы доступна на сайте разработчиков . На данный момент это версия 1.6.1. Там же можно загрузить оригинальные руководства по работе с компонентами пакета, правда, на английском языке. Эти руководства входят в справочную систему программы. Вызвать ее можно через меню Help – User Manual .

Для проведения измерений понадобится некоторое оборудование. Ниже перечислено то, что используется у меня:

  1. Ноутбук Dell Inspiron 1720 с операционной системой Windows XP Professional x86 и установленным программным пакетом Arta Software.
  2. Звуковая карта E-MU 0404 USB.
  3. Усилитель Denon PMA-500AE. Он подходит, поскольку имеет функцию обхода коррекции тембра, тонкомпенсации и баланса – Source Direct.
  4. Вольтметр В7-38.
  5. Магазин сопротивлений Р33.
  6. Микрофон измерительный Nady CM 100.
  7. Стойка для микрофона. В ее роли выступает стойка от фотоаппарата, обладающая функциями наклона, поворота и регулировки высоты.
  8. “Референсный” резистор (Rref), необходимый при измерениях импеданса. Я использую ПЭВ-10 номиналом 10 Ом. Измеренное сопротивление составляет 9.85 Ом.
  9. Два кабеля с делителями, защищающими вход звуковой карты от опасных для нее величин напряжения. Делители распаяны внутри TRS-джека.
  10. Микрофонный кабель XLR и несколько кабелей для соединения входов/выходов звуковой карты и ее соединения с усилителем.

Для измерения импеданса требуется подключить оборудование по схеме Figure 12.

Измерение импеданса производится за счет падения напряжения на резисторе Rref. Разработчики Arta Software рекомендуют использовать величину Rref 27 Ом. Я использую меньший номинал – 10 Ом (измеренное сопротивление составляет 9.85 Ом), что позволяет при измерении устанавливать на выходе усилителя меньшую амплитуду напряжения. Реальное сопротивление резистора Rref должно быть измерено с минимальной погрешностью. От этого зависит погрешность измерения импеданса и, как следствие, погрешность расчета параметров Тиля-Смолла.

В Arta Software возможно измерять импеданс как низко- и среднечастотных динамиков, так и высокочастотных. Для последних используется отдельная методика – измерение на шаговом синусоидальном сигнале в заданном диапазоне частот. Измерять на периодическом шуме импеданс высокочастотных динамиков нельзя, возможно их повреждение.

Итак, запускаем Limp. Для этого в Windows меню “Пуск” необходимо выбрать Все программы – Arta Software – Limp . Окно программы показано ниже (Figure 13).

Здесь я также, как и в Arta, изменяю цветовую гамму на более приятную для глаз. Смена цвета рабочей области производится с помощью команды меню Edit – B/W background color , остальные цвета изменяются через меню Edit – Colors and grid style . Дополнительно отключаю выделение линий через меню Edit – Use thick pen .

Настройка программы начинается с меню Setup – Audio devices (Figure 14). Здесь, в полях Wave Input Device и Wave Output Device , необходимо указать используемую звуковую карту.

Следующее меню – Setup – Measurement (Figure 15).

В поле Reference Channel указываем канал, служащий опорным. Если соединение схемы измерений произведено в соответствии с изображением Figure 12, то опорный канал – правый (Right). В поле Reference Resistor указываем измеренное значение резистора Rref. В полях High cut-off и Low cut-off указывается отображаемый на экране частотный диапазон импеданса. Не сам частотный диапазон, отображение которого изменяется через меню Setup – Graph , но именно частотный диапазон кривой импеданса. Сказанное справедливо для измерений на периодическом шуме. Для измерений на шаговом синусоидальном сигнале эти поля отвечают за диапазон измерений. В поле Frequency increment устанавливается шаг для измерений на шаговом синусоидальном сигнале. Рекомендую установить 1/48 октавы, получив тем самым меньший шаг и более точное измерение импеданса. Поля Min. integration time (ms) , Transient time (ms) и Intra burst pause (ms) определяют соответственно время интегрирования, длительность шага синусоидального сигнала и паузу между шагами. Если компьютер, с помощью которого проводятся измерения, не обеспечивает должного быстродействия, увеличьте значения в этих полях вдвое. В поле FFT size устанавливается размер блока FFT. Установка бОльшего значения улучшает разрешение по частоте, но увеличивает время измерений. Остальные поля настраивают усреднение результатов измерений. Эти поля могут быть полезны при измерениях импеданса с добавочной массой, если последняя не может быть закреплена на диффузоре динамика. Небольшие колебания добавочной массы делают отображаемую на экране ИЧХ шероховатой. Усреднение немного помогает от этого избавиться. Работает усреднение только при измерениях на периодическом шуме.

Дальше я описываю методику измерения импеданса, подходящую для низко- и среднечастотных динамиков. Использовать эту методику для измерения высокочастотных динамиков нельзя. Для них методика измерений будет описана чуть ниже.

Теперь необходимо установить амплитуду тока через звуковую катушку измеряемого динамика. Учитывая нелинейность параметров динамиков при различном токе через звуковую катушку, желательно использовать для измерений ток не менее 40-50 mA. Для установки амплитуды тока, к клеммам для измерения подключается резистор номиналом, близким к номинальному сопротивлению динамика. У меня в качестве подопытного выступает широкополосный динамик 4А28. Его номинальное сопротивление – 12 Ом, столько я и выставляю на магазине сопротивлений. Параллельно резистору для теста подключается вольтметр. Ток через резистор рассчитывается по закону Ома.

Подключили, переходим в меню – Setup – Generator (Figure 16).

В поле Type устанавливается тип сигнала для измерений – периодический розовый шум (Pink PN) или синус (Sine). В поле Output level можно изменить уровень тестового сигнала, что удобно, например, при оценке линейности динамиков. В поле Sine freq. (Hz) устанавливается частота генерируемого синусоидального сигнала. В поле Pink cut-off (Hz) – частота среза розового шума. Не рекомендую использовать слишком малое значение (например, 20 Hz), поскольку при измерениях с добавочной массой, из-за роста амплитуды на низких частотах, грузики на диффузоре могут вызывать искажения ИЧХ.

Сначала выбираем в поле Type значение Sine. В поле Sine freq. (Hz) устанавливаем частоту 315 Hz. Если в наличии нет вольтметра, работающего в широком диапазоне частот, используйте меньшее значение, например, 100 или 50 Hz. В поле Output level устанавливаем значение 0 dB. Нажимаем кнопку Test . Устанавливаем через резистор требуемый ток. Я установил на выходе усилителя напряжение 0.6063 v, что соответствует току около 50 mA через нагрузку сопротивлением 12 Ом. Останавливаем генерацию повторным нажатием кнопки Test . Отключаем резистор от клемм для теста и вновь нажимаем кнопку Test . В окне Generator Setup отображаются уровни входных сигналов левого и правого каналов. С помощью регулировки чувствительности устанавливаем уровень в диапазоне -20…-10 dB. Следует установить его идентичным для обоих каналов. После установки останавливаем генерацию нажатием кнопки Test. В поле Type выбираем Pink PN, тем самым установив для теста периодический розовый шум. Нажимаем ОК .

В меню Setup – Graph (Figure 17) можно изменить отображаемый на экране частотный диапазон и диапазон значений сопротивления. Галочка View Phase отвечает за отображение фазы импеданса. Это меню также можно вызвать нажатием правой кнопки мыши на графике.

Переходим в меню Record – Calibrate (Figure 18).

Здесь проводится процедура калибровки. Нажимаем кнопку Generate . На индикаторе отобразится уровень входных сигналов. Уровень должен быть таким, каким его устанавливали в меню Setup – Generator (Figure 16). Останавливаем генерацию повторным нажатием кнопки Generate . В поле Number of averages (усреднение) устанавливаем значение 3…5. Нажимаем кнопку Calibrate . По завершении калибровки, справа, в окне Status , отобразится информация о количестве сэмплов тестового сигнала, частоте дискретизации и разнице амплитуды напряжений между каналами (Figure 19). Если эта разница превысит значение 2 dB, программа выдаст предупреждение. Хорошим результатом следует признать значение разницы менее 0.2 dB. Нажимаем ОК .

Все готово для проведения измерений. Я сделаю небольшое отступление и приведу таблицу со значениями относительной погрешности при измерении сопротивления (Figure 20). Относительная погрешность вычислена по формуле ((Rm-Rs)/Rs)*100, где Rs – значение сопротивления, установленного на магазине сопротивлений, Rm – значение сопротивления, измеренное Limp.

Измеряем сопротивление постоянному току (Re) звуковой катушки динамика с помощью омметра и подключаем динамик к клеммам для теста. Располагать динамик на полу нежелательно. Лучше всего подходит небольшая стойка с площадкой меньше диаметра магнита динамика. Если есть возможность закрепить динамик на весу, это будет очень хорошим решением. Внимательно отнеситесь к динамикам, имеющим отверстие в керне. Такие динамики можно измерять только на весу.

В Limp запуск и остановка процесса измерений производится либо через меню Record – Start и Record – Stop , либо с помощью кнопок на панели задач. Кнопка Start обозначена красным треугольником, кнопка Stop – красным кружком. Запускаем процесс измерений. После отображения на экране импеданса и фазы (Figure 21), останавливаем измерения.

Результат измерений можно сохранить с расширением *.lim ( File – Save As… ), либо экспортировать в формат *.txt, *.zma, *.csv ( File – Export as … ). Если производится экспорт в *.csv, разделитель дробной части (точка, либо запятая) может быть выбран через меню Setup – CSV format .

После измерения импеданса можно рассчитать неполный перечень параметров Тиля-Смолла. Для этого в меню Analyze необходимо выбрать либо Loudspeaker parameters – Added mass method , либо Loudspeaker parameters – Closed box method . Первый пункт меню предназначен для расчета параметров Тиля-Смолла методом добавочной массы, второй – с использованием измерительного ящика. В данном случае разницы нет, но я по привычке использую меню добавочной массы (Figure 22).

В открывшемся окне в поле Voice coil Resistance (ohms) указываем сопротивление звуковой катушки динамика постоянному току и нажимаем кнопку Calculate TSP . Для расчета всех параметров Тиля-Смолла необходимо провести еще одно измерение импеданса – с добавочной массой. Закрываем текущее окно. В меню Overlay выбираем Set as overlay . Кривая импеданса будет зафиксирована программой и на графике изменит свой цвет.

В качестве добавочной массы я использую монеты времен СССР. Их номинал (1, 2, 3 и 5 копеек) соответствует весу в граммах. Оптимальное количество добавочной массы такое, при котором частота основного резонанса подвижной системы уменьшается на 20-50%. Назвать точное количество этой массы невозможно, поэтому для начала следует выбрать небольшую величину – 10-15 грамм. В дальнейшем можно будет добавить (или убавить) и провести измерение повторно.

Располагаем массу на диффузоре динамика, проводим измерение (Figure 23).

Переходим в меню Analyze – Loudspeaker parameters – Added mass method . В поле Voice coil Resistance (ohms) указываем сопротивление по постоянному току , в поле Membrane diameter (cm) – диаметр излучающей поверхности в сантиметрах ( измеряется между центрами подвеса ), в поле Added mass (g) – добавочную массу в граммах , после чего нажимаем кнопку Calculate TSP (Figure 24).

Данные можно скопировать в буфер обмена ( Copy to Clipboard ), либо экспортировать в файл *.csv ( Export in .CSV file ).

Для измерения импеданса высокочастотных динамиков необходимо внести некоторые изменения в настройки программы. Также, как и перед началом измерений низко- и среднечастотных динамиков, к клеммам для теста подключается резистор номинальным сопротивлением, равным номинальному сопротивлению динамика. Параллельно резистору подключается вольтметр. С помощью меню – Setup – Generator (Figure 16) производим установку тока через резистор, аналогично описанной выше методики с единственным отличием – ток через резистор необходимо установить в пределах 10 mA . Это безопасное значение тока для нежных твитеров. По завершении установки тока производим настройку чувствительности так, как это было описано ранее. По окончании процедуры настройки устанавливаем в меню Generator Setup в поле Type значение Sine и нажимаем ОК .

Переходим в меню – Setup – Measurement (Figure 15). В поле Low cut-off устанавливаем нижнюю границу частотного диапазона измерений. Для купольных твитеров с низкой (600-700 Hz) частотой резонанса можно использовать значение 200 Hz. Устанавливаем и нажимаем ОК .

В меню Record – Calibrate (Figure 18) проводим процедуру калибровки, описанную выше.

Осторожность не помешает, поэтому сначала вместо динамика подключаем к клеммам для измерения резистор и запускаем процесс измерений. Убедившись, что процесс начинает протекать в соответствии с заданными установками, останавливаем измерение. Теперь подключаем к клеммам для теста измеряемый динамик и вновь запускаем процесс измерений. По окончании измерений остановка генератора произойдет автоматически. Сам процесс измерений на шаговом синусоидальном сигнале – достаточно длительная процедура, наберитесь терпения.

Если интересуют параметры Тиля-Смолла, рассчитать их можно через меню Analyze – Loudspeaker parameters – Added mass method . Достаточно указать сопротивление звуковой катушки постоянному току и нажать кнопку Calculate TSP (Figure 26).

Отдельное спасибо Сирвутису Алексею ( Lexus ) за предоставленную информацию.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector