Меню

Как измерить кубатуру бочки круглой



Как вычислить объем бочки

Определяем объём бочки: лёгкие формулы, практические советы

В последнее время все чаще в хозяйстве используется бондарная продукция. Это объясняется не только её красивым внешним видом, но и экологичностью. Засоленные в кадке огурцы или капуста, залитый выдавленный из винограда сок, который в последующем превратится в ароматный алкогольный напиток – лучшего места для хранения разной жидкости и заготовок не найти. Сейчас большие двухсотлитровые кадки используются даже для сооружения современных вертикальных грядок, на которых выращивают овощи и ягоды. Учитывая широкую область применения ёмкостей, хозяйкам надо понимать, как вычислить объем бочки. Многие сосуды имеют цилиндрическую форму, поэтому получить необходимые параметры не так уж и сложно. Вычислить объём выпуклой бочки (её ещё называют «пузатая») сможет не каждая хозяйка. В данном случае нужно не просто измерить внутренний диаметр сосуда и его высоту. Всё гораздо сложнее.

Цилиндрический вариант

Для того чтобы получить нужные параметры, необходимо обзавестись некоторыми инструментами. Ничего специально покупать не стоит, ведь подобные веще обязательно найдутся в доме каждой хозяйки. Для этого понадобится:

  1. верёвка;
  2. калькулятор;
  3. линейка или рулетка.

Чтобы узнать данные цилиндрической бочки, следует измерять её радиус и высоту. Но учтите, если у вас сосуд с толстыми стенками, то замеры следует проводить внутри, а не снаружи. В противном случае вы получите не вместимость ёмкости, а площадь, которую она занимает в помещении.

Данные, которые вы получили при замерах, следует перевести в метры. Для вычисления используется формула:

Символы имеют такое значение:

  • π – равно 3,14;
  • R – это радиус дна ёмкости;
  • H – её высота;
  • V – это объем сосуда, который имеет круглую форму.

Если по каким-то причинам вы не можете получить радиус ёмкости, то измерьте диаметр. Это просто. Возьмите рулетку или верёвку и расположите её возле стенки на дне, а другой конец протяните к противоположной стороне. Диаметр ёмкости в два раза больше, чем её радиус. Поэтому данные нужно будет разделить на 2.

Бывают случаи, когда и этот показатель не получается измерить, тогда можно использовать следующую хитрость: определить окружность. Для этого понадобится верёвка. Её нужно обмотать вокруг сосуда один раз.

Теперь, чтобы понять диаметр бочки, полученные данные разделите на π, то есть, на 3,14.

Используя этот результат, можно вычислить необходимые показатели, применив вышеуказанную формулу.

Определяем вместительность старинной «пузатой» бочки

Рассчитать данные такого сосуда гораздо сложнее, ведь в уравнении присутствуют два диаметра (дна и её выпуклой части). Формула, использующая в настоящее время для вычисления объёма, была придумана виноделами, она пришла к нам из Франции:

В данном случае маленькая латинская буква r обозначает радиус нижней части сосуда, а большая R – самой выпуклой. Бывают случаи, когда владелец может определить только эти два показателя. Тогда используйте для вычисления следующее уравнение:

Такие формулы помогут получить нужные параметры.

Объём в литрах

Учитывая то, что хозяйки используют кадки для хранения продуктов и создания заготовок на зиму, нужно чётко понимать, насколько они вместительны. Такие сведения нельзя получить, узнав только объём сосуда в кубах. В домашнем хозяйстве используются несколько другие меры ёмкостей. Для этого нужно определить, сколько помещается продуктов в литрах.

Известно, что 1 куб соответствует 1000 литрам жидкости. В то время как 1 л равен 0,001 куба. Именно эти показатели нужно использовать в качестве формулы для вычисления. Они позволяют существенно упростить расчёт, к примеру:

0,2 куба * 1000 = 200 (л).

То есть, двухсотлитровая бочка имеет объём 2 куба.

Читайте также:  Как измерить внутренний размер резьбы

Источник

Расчет объема жидкости в бочке или цилиндре

Инструкция для калькулятора расчета объема жидкости в бочке

Впишите размеры неполной вертикальной емкости в миллиметрах:

L – Длина резервуара, т.е. линейный размер цистерны в продольном направлении.

d – Диаметр емкости (численно равен двум радиусам).

Параметры L и d можно измерить рулеткой, лазерным дальномером или линейкой.

h – Высота уровня жидкости, ее определяют мерной линейкой (т.н. метршток), если такого инструмента нет, подойдет обычный стержень из проволоки или дерева подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в емкость до дна, отметив уровень, достаньте и измерьте рулеткой. Также определить h можно, измерив, расстояние от верха цистерны до поверхности жидкости и отняв этот показатель от значения диаметра.

Нажмите «Рассчитать».

Онлайн калькулятор поможет посчитать полный объём емкости и узнать максимальное количество жидкости в кубических метрах или литрах, которое может вместить резервуар. Узнать количество жидкости – сколько вещества поместилось в цистерне. Значение свободного объёма даст представление, сколько жидкости еще влезет в емкость. Также программа вычислит площадь дна, площадь боковой поверхности и общую площадь емкости, что поможет легко прикинуть нужное количество покрасочных материалов для обработки всей цистерны или ее частей.

Источник

Сколько литров и кубов в бочке?

Объём бочки – на первый взгляд, довольно простая величина. В цилиндрической бочке, имеющей постоянный диаметр, легко его рассчитать. Старинный вариант, обладающий выгнутыми стенками, требует особого подхода к подсчёту объёма.

Что понадобится для расчёта?

Кроме калькулятора, пригодится рулеточная линейка. Длина её может не превышать 3 м.

Как вычислить объём разных бочек?

Для начала в цилиндрической бочке замеряется диаметр. Его легко определить, заметив наибольшее значение.

В случае с толстостенной бочкой обязательно учитывается внутренний, а не внешний диаметр.

Если был использован более тонкий материал, например нержавеющая сталь до 1 мм, то толщиной стенок емкости можно пренебречь.

Значение диаметра, измеренного для конкретной ёмкости, делится надвое. Это и есть радиус изделия. Формула включает проведение двух расчетов.

  1. Квадрат значения радиуса умножается на число 3,1415926535…, более приближенное – 3,1416. Число это связано с длиной окружности – оно представляет собой бесконечную десятичную дробь (иррациональная величина). Полученная величина – площадь круга или основание (дно) в своём подлинном размере.
  2. Измеряем высоту бочки – и умножаем её на полученную площадь дна. Это и есть объём ёмкости. Измеряемые значения переводятся в метры, иначе значение объёма в кубометрах будет нереально большим.

Для старинной бочки, имеющей переменный диаметр, проводим немного иной расчет.

  1. Измеряем диаметр в верхней части – наименьшее действующее значение. Сверху и снизу оно окажется одинаковым – оба дна ёмкости также равные. Делим диаметр надвое, возводим в квадрат полученное значение и умножаем на 3,1416.
  2. С помощью рулеточной линейки опоясываем бочку вокруг и посередине. Полученное значение – длина окружности. Разделив её на число 3,1416, получаем диаметр, делим его значение ещё надвое. Это и есть максимальный радиус ёмкости – большее его значение. Вычитаем из радиуса толщину стенок (изогнутых досок, образующих стенки) – получаем реальное, действующее значение радиуса (в максимуме). Умножаем на квадрат его значения число 3,1416 – получим площадь части воображаемой плоскости, проходящей через середину бочки и ограниченной внутренней поверхностью её стенок.
  3. Определяем среднее арифметическое (в квадратных метрах) большего и меньшего действующих значений основания ёмкости. То есть складываем их – и делим надвое.
  4. Замеряем (в метрах) и умножаем значение высоты на среднюю площадь дна ёмкости.

Полученное значение и есть объём «пузатой» ёмкости.

Читайте также:  Измерение емкости конденсатора резонансным методом

Для эллипсной бочки схема подсчёта иная.

  1. Измеряем расстояние между противолежащими точками ёмкости, расположенными на эллипсе (овале поперечного сечения). Должны получиться две заметно отличающейся величины.
  2. Узнаём среднее арифметическое данных величин, делим его ещё раз пополам – это и есть радиус.
  3. Замеряем высоту – и умножаем её значение на вторую степень среднего радиуса и число 3,1416. Полученное значение – в кубометрах – и есть объём овальной ёмкости.

Хотя понятие радиуса к овалу неприменимо, его легко определить как среднюю величину. Предполагается, что овал представляет собой идеальную кривую, напоминающую сплюснутую и вытянутую одновременно окружность.

Прямоугольные ёмкости, чьё пространство внутри является параллелепипедом, рассчитываются по объёму быстрее, чем их «круглые» собратья. Длина, ширина и высота бака умножаются друг на друга.

Баки в виде призмы (чаще всего правильной) мало распространены, их формула расчёта усложнена. Для нахождения их объёма введены следующие геометрические понятия:

  • периметр многоугольника – основание, площадь которого нужна для вычисления объёма ёмкости;
  • апофема – длина отрезка, соединяющего центр многоугольника с серединой любой из его сторон.

Чтобы найти площадь дна, например, правильной шестиугольной призмы, сделайте 4 расчета.

  1. Измерьте и высчитайте периметр дна призматической бочки.
  2. Определите центр призмы, расчертив карандашом линии, соединяющие противолежащие стороны правильного шестиугольника. Точка их пересечения – центр дна. Отметьте точку в середине любой из сторон дна-шестиугольника и проведите отрезок-апофему. Измерьте его длину.
  3. Разделите периметр дна надвое – и умножьте его на значение апофемы. Не забывайте измеренные величины переводить в метры. Получится площадь – в квадратных метрах – дна бочки.
  4. Умножьте полученное значение на высоту.

Объём шестиугольной ёмкости-призмы вычислен. Для бочек с основанием в виде неправильного многоугольника потребуется перемерить все стороны дна – и перенести их на чертёж, вписать этот многоугольник в окружность. Формула расчёта объёма такой геометрической фигуры может быть ещё несколько усложнена. Но такие резервуары промышленность почти не выпускает, и расчёт «неправильной» ёмкости представляет больше теоретический интерес, чем практический.

Объём в литрах

Вычислить литраж – значит, принять во внимание постоянную величину: 1 л воды – 0,001 м3. Центнер воды занимает 0,1 куба. Эта формула справедлива для всех жидкостей: один литр – это кубический дециметр. Высчитать кубатуру, например, цистерны, перевозящей 4 т воды, легко: это и есть столько же «кубов». А вот для, к примеру, нефти «куб» весит заметно меньше одной тонны. Плотность этой же нефти настолько же меньше плотности воды, насколько вес определённого объёма нефтепродуктов ниже массы такого же количества воды. Но 1 м3 – величина постоянная.

Например, ёмкость для полива огорода (требует врезку поливных трубопроводов или патрубков для садовых шлангов) на 200 л имеет объём в 0,2 м3. Чтобы посчитать это значение, используется та же формула перевода литров в кубометры.

Для запаса воды в одну тонну (1 м3) понадобится 5 таких емкостей.

Источник

Расчета объема жидкости в цистерне

Инструкция для калькулятора количества и объема жидкости в цистерне

Размеры вводите в миллиметрах:

D – диаметр емкости можно замерить рулеткой. Необходимо помнить что диаметр – это отрезок наибольшей длины, соединяющий две точки на окружности и проходящий через ее центр.

H – уровень жидкости замеряют, используя метршток, но если такого инструмента нет под рукой, воспользуйтесь обычным стержнем из проволоки или деревянной планкой подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в цистерну до дна, отметьте на нем уровень, достаньте и измерьте рулеткой. Также определить H можно, измерив, расстояние от верха цистерны до поверхности жидкости и отняв этот показатель от значения диаметра.

Читайте также:  Как измерить температуру воска

L – длина емкости.

Если необходим чертеж в бумажном виде, целесообразно отметить пункт «Черно-белый чертеж». Вы получите контрастное изображение и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать» и получите следующие данные:

Объём емкости – этот параметр характеризует полный объём цистерны, т.е. какое максимальное количество жидкости в кубических метрах или литрах может в нее поместиться.

Количество жидкости – сколько вещества находится в цистерне на данный момент.

Свободный объём позволяет оценить, сколько жидкости еще можно залить в емкость.

В результате, Вы получаете расчет не только объема цистерны, но и объема жидкости в неполной цистерне.

Изделия из металла следует периодически красить, тогда срок их службы значительно возрастет. Зная площадь передней поверхности, площадь боковой поверхности и общую площадь емкости легко оценить необходимое количество лакокрасочных материалов для обработки всей емкости или ее отдельных частей.

Источник

Формула объема цилиндра: пример решения задачи

Объем является физической величиной, которая присуща телу с ненулевыми размерами вдоль каждого из трех направлений пространства (все реальные объекты). В статье в качестве примера формулы объема рассматривается соответствующее выражение для цилиндра.

Объем тел

Эта физическая величина показывает, какую часть пространства занимает то или иное тело. Например, объем Солнца намного больше этой величины для нашей планеты. Это означает, что принадлежащее Солнцу пространство, в котором находится вещество этой звезды (плазма), превышает земную пространственную область.

Вам будет интересно: Система — это. Значение слова «система»

Объем изменяется в кубических единицах длины, в СИ это метры в кубе (м3). На практике объемы жидких тел измеряют в литрах. Маленькие объемы могут выражать в кубических сантиметрах, миллилитрах и других единицах.

Для вычисления объема формула будет зависеть от геометрических особенностей рассматриваемого объекта. Например, для куба это тройное произведение длины его ребер. Ниже рассмотрим фигуру цилиндр и ответим на вопрос о том, как найти объем его.

Понятие о цилиндре

Фигура, о которой пойдет речь, является достаточно непростой. Согласно геометрическому определению, она представляет собой поверхность, образованную путем параллельного перемещения прямой (генератрисы) вдоль некоторой кривой (директрисы). Генератриса также называется образующей, а директриса — направляющей.

Если директриса — это окружность, а генератриса перпендикулярна ей, тогда полученный цилиндр называют круглым и прямым. О нем и пойдет дальше речь.

Цилиндр имеет два основания, которые параллельны друг другу и соединены цилиндрической поверхностью. Проходящая через центры двух оснований прямая называется осью круглого цилиндра. Все точки фигуры находятся на одинаковом расстоянии от этой прямой, которое равно радиусу основания.

Круглый прямой цилиндр однозначно определяется двумя параметрами: радиусом основания (R) и расстоянием между основаниями — высота H.

Формула объема цилиндра

Для расчета области пространства, которую занимает цилиндр, достаточно знать его высоту H и радиус основания R. Искомое равенство в этом случае имеет вид:

V = pi*R2*H, здесь pi = 3,1416

Понять эту формулу объема просто: поскольку высота перпендикулярна основаниям, то если ее умножить на площадь одного из них, получается нужная величина V.

Вычисление объема бочки

Для примера решим такую задачу: определим, сколько воды поместится в бочку, имеющую диаметр дна 50 см и высоту 1 метр.

Радиус бочки равен R=D/2=50/2=25 см. Подставляем данные в формулу, получаем:

V = pi*R2*H = 3,1416*252*100 = 196350 см3

Поскольку 1 л = 1 дм3 = 1000 см3, то получаем:

V = 196350/1000 = 196,35 литра.

То есть в бочку можно налить почти 200 литров воды.

Источник