- Модуль вектора. Длина вектора.
- Определение длины вектора
- Формулы длины вектора
- Формула длины вектора для плоских задач
- Формула длины вектора для пространственных задач
- Формула длины n -мерного вектора
- Примеры задач на вычисление длины вектора
- Примеры вычисления длины вектора для плоских задачи
- Примеры вычисления длины вектора для пространственных задачи
- Примеры вычисления длины вектора для пространств с размерностью большей 3
- Онлайн калькулятор. Модуль вектора. Длина вектора.
- Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
- Инструкция использования калькулятора для вычисления длины вектора
- Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
- Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Вычесления длины вектора (модуля вектора)
- Как вычислить модуль вектора
- Как найти модуль вектора
- Формула
- Примеры вычисления модуля вектора
- Как определить модуль вектора
Модуль вектора. Длина вектора.
Определение длины вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.
Формулы длины вектора
Формула длины вектора для плоских задач
В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:
Формула длины вектора для пространственных задач
В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:
Формула длины n -мерного вектора
В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:
Примеры задач на вычисление длины вектора
Примеры вычисления длины вектора для плоских задачи
Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .
Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.
Примеры вычисления длины вектора для пространственных задачи
Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.
Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .
Примеры вычисления длины вектора для пространств с размерностью большей 3
Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5
Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Источник
Онлайн калькулятор. Модуль вектора. Длина вектора.
Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденый материал.
Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
Размерность вектора:
Форма представления вектора:
Инструкция использования калькулятора для вычисления длины вектора
Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..
Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Вычесления длины вектора (модуля вектора)
Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Источник
Как вычислить модуль вектора
Под модулем вектора понимают его длину. Если нет возможности измерить ее линейкой, ее можно вычислить. В том случае, когда вектор задан декартовыми координатами применяется специальная формула. Важно уметь вычислить модуль вектора при нахождении суммы или разности двух известных векторов.Вам понадобится
Определите координаты вектора в декартовой системе. Для этого параллельным переносом перенесите его так, чтобы начало вектора совпадало с началом координатной плоскости. Координаты конца вектора в этом случае, считайте координатами самого вектора. Другой способ – вычесть от координат конца вектора соответствующие координаты начала. Например, если координаты начала и конца соответственно равны (2;-2) и (-1;2), то координаты вектора будут равны (-1-2;2-(-2))=(-3;4).
Определите модуль вектора, который численно равен его длине. Для того возведите каждую из его координат в квадрат, найдите их сумму и из полученного числа извлеките квадратный корень d=√(x²+y²). Например, модуль вектора с координатами (-3;4) рассчитайте по формуле d=√(x²+y²)=√((-3)²+4²)=√(25)=5 единичных отрезков.
Найдите модуль вектора, который является результатом суммирования двух известных векторов. Определите координаты вектора, который является суммой двух данных векторов. Для этого сложите соответствующие координаты известных векторов. Например, если нужно найти сумму векторов (-1;5) и (4;3), то координаты такого вектора будут равны (-1+4;5+3)=(3;8). После этого модуль вектора вычислите по методике, изложенной в предыдущем пункте. Чтобы найти разность векторов, умножьте координаты вычитаемого вектора на -1 и сложите полученные значения.
Определите модуль вектора, если известны длины векторов d1 и d2, которые складываются и угол αмежду ними. Постойте параллелограмм на известных векторах и проведите его диагональ, выходящего из угла между векторами. Измерьте длину получившегося отрезка. Это будет модуль вектора, который является суммой двух данных векторов.
Если нет возможности произвести измерение, рассчитайте модуль. Для этого значение длины каждого из векторов возведите в квадрат. Найдите сумму квадратов,из полученного результата отнимите произведение этих же модулей, умноженное на косинус угла между векторами. Их полученного результата извлеките квадратный кореньd=√(d1²+d2²-d1∙d2∙Cos(α)).
Источник
Как найти модуль вектора
Формула
Чтобы найти модуль вектора, заданного своими координатами, нужно найти его длину, то есть извлечь корень из суммы квадратов его координат. Если вектор задан на плоскости и имеет координаты $\bar=\left(a_
То есть модуль вектора равен корню квадратному из суммы квадратов координат.
Если вектор задан в пространстве координатами , то его модуль вычисляется по формуле
Примеры вычисления модуля вектора
Задание. Найти модуль вектора $\bar=(-1 ; 1)$
Решение. Для нахождения модуля вектора, заданного на плоскости воспользуемся формулой:
Ответ. $|\bar|=\sqrt<2>$
Как найти модуль вектора не по зубам? Тебе ответит эксперт через 10 минут!
Задание. В пространстве заданны точки $A(2 ;-4 ; 1)$ и $B(-2 ; 0 ; 3)$. Найти модуль вектора $\overline$
Решение. Найдем координаты вектора $\overline$. Для этого из координат конца (точки $B$ ) вычтем соответствующие координаты начала (точки $A$ ):
Далее для нахождения модуля вектора $\overline$ воспользуемся формулой:
Подставляя координаты вектора $\overline$, получим:
Ответ. $|\overrightarrow|=6$
Как определить модуль вектора
Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора, следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.
Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора называется модулем или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства применяются для графического изображения различных величин или действий, например, физических сил, движения элементарных частиц и пр.
Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать средства векторной алгебры в различных вычислениях, например, определения углов между пространственными прямыми и плоскостями.
Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.
Определите проекции самого вектора, которые можно вычислить по формуле:АВх = (xb — xa) = 3;ABy = (yb — ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.
В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора. Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора. Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb — xa)² + (yb – ya)²) = √13.
Очевидно, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора:|AB| = √((xb — xa)² + (yb – ya)² + (zb — za)²).
Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.
Источник