Меню

Как измерить мощность трехфазного тока



Как измерить мощность в цепи трехфазного переменного тока

Мощность в цепи трехфазного тока может быть измерена с помощью одного, двух и трех ваттметров. Метод одного прибора применяют в трехфазной симметричной системе. Активная мощность всей системы равна утроенной мощности потребления по одной из фаз.

При соединении нагрузки звездой с доступной нулевой точкой или если при соединении нагрузки треугольником имеется возможность включить обмотку ваттметра последовательно с нагрузкой, можно использовать схемы включения, показанные на рис. 1.

Рис. 1 Схемы измерения мощности трехфазного переменного тока при соединении нагрузок а — по схеме звезды с доступной нулевой точкой; б — по схеме треугольника с помощью одного ваттметра

Если нагрузка соединена звездой с недоступной нулевой точкой или треугольником, то можно применить схему с искусственной нулевой точкой (рис. 2). В этом случае сопротивления должны быть равны Rвт+ Rа = Rb =Rc.

Рис 2. Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой

Для измерения реактивной мощности токовые концы ваттметра включают в рассечку любой фазы, а концы обмотки напряжения — на две другие фазы (рис. 3). Полная реактивная мощность определяется умножением показания ваттметра на корень из трех. (Даже при незначительной асимметрии фаз применение данного метода дает значительную погрешность).

Рис. 3. Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром

Методом двух приборов можно пользоваться при симметричной и несимметричной нагрузке фаз. Три равноценных варианта включения ваттметров для измерения активной мощности показаны на рис. 4. Активная мощность определяется как сумма показаний ваттметров.

При измерении реактивной мощности можно применять схему рис. 5, а с искусственной нулевой точкой. Для создания нулевой точки необходимо выполнить условие равенства сопротивлений обмоток напряжений ваттметров и резистора R. Реактивная мощность вычисляется по формуле

где Р1 и Р2 — показания ваттметров.

По этой же формуле можно вычислить реактивную мощность при равномерной загрузке фаз и соединении ваттметров по схеме рис. 4. Достоинство этого способа в том, что по одной и той же схеме можно определить активную и реактивную мощности. При равномерной загрузке фаз реактивная мощность может быть измерена по схеме рис. 5, б.

Метод трех приборов применяется при любой нагрузке фаз. Активная мощность может быть замерена по схеме рис. 6. Мощность всей цепи определяется суммированием показаний всех ваттметров.

Рис. 4. Схемы измерения активной мощности трехфазного переменного тока двумя ваттметрами а — токовые обмотки включены в фазы А и С; б — в фазы А и В; в — в фазы В и С

Реактивная мощность для трех- и четырехпроводной сети измеряется по схеме рис. 7 и вычисляется по формуле

где РA, РB, РC — показания ваттметров, включенных в фазы А, В, С.

Рис. 5. Схемы измерения реактивной мощности трехфазного переменного тока двумя ваттметрами

Рис. 6. Схемы измерения активной мощности трехфазного переменного тока тремя ваттметрами а — при наличии нулевого провода; б — с искусственной нулевой точкой

На практике обычно применяют одно-, двух- и трехэлементные трехфазные ваттметры соответственно методу измерения.

Чтобы расширить предел измерения, можно применить все указанные схемы при подключении ваттметров через измерительные трансформаторы тока и напряжения. На рис. 8 в качестве примера показана схема измерения мощности по методу двух приборов при включении их через измерительные трансформаторы тока и напряжения.

Рис. 8. Схемы включения ваттметров через измерительные трансформаторы.

Источник

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3·Uф·Iф· cos фи =3·Uф·I· cosфи .

При соединении в треугольник P=3·Uф·Iф· cos фи =3·U·Iф· cosфи .

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/1,73, а во второе Iф=I/1,73, получим общую формулу P= 1 ,73·U·I· cosфи .

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cosфи =0,7·

Вольтметр и амперметр показывают линейные значения, действующие значения.

Мощность двигателя по общей формуле будет:

P1=1 ,73·U·I· cosфи =1,73 · 380·20·0,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/1,73=380/1,73,

P1=3·Uф·Iф · cosфи =3·U/1,73·I· cosфи =31,7380/1,73·20·0,7;

P1=3 · 380/1,73·20·0,7=9225 Вт = 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/ 1 ,73=20/ 1 ,73; таким образом,

P1=3·Uф·Iф · cosфи =3·U·I/ 1 ,73· cosфи ;

P1=3 · 380·20/1,73·0,7=9225 Вт = 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sinфи=0,8 Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В·

Читайте также:  Прибор для измерения давления катализатора

Общая мощность ламп Pл=3·100·40 Вт =12000 Вт = 12 кВт.

Лампы находятся под фазным напряжением Uф=U/ 1 ,73=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=10·5 кВт = 50 кВт.

Активная мощность, отдаваемая генератором, PГ и получаемая потребителем P1 равны, если пренебречь потерей мощности в проводах электропередачи:

P1= PГ=Pл+Pд=12+50=62 кВт.

Полная мощность генератора S=PГ/ cosфи =62/0,8=77,5 кВА.

В этом примере все фазы одинаково нагружены, а потому в нулевом проводе в каждое мгновение ток равен нулю.

Фазный ток обмотки статора генератора равен линейному току линии (Iф=I), а его значение можно получить, воспользовавшись формулой для мощности трехфазного тока:

I=P/( 1,73 ·U · cosфи )=62000/(1,73·380·0,8)=117,8 А.

3. На рис. 4 показано, что к фазе B и нулевому проводу подключена плитка мощностью 500 Вт, а к фазе C и нулевому проводу – лампа 60 Вт. К трем фазам ABC подключены двигатель мощностью 2 кВт при cosфи =0,7 и электрическая плита мощностью 3 кВт.

Чему равны общая активная и полная мощности потребителей· Какие токи проходят в отдельных фазах при линейном напряжении сети U=380 В

Активная мощность потребителей P=500+60+2000+3000=5560 Вт=5,56 кВт.

Полная мощность двигателя S=P/ cosфи =2000/0,7=2857 ВА.

Общая полная мощность потребителей будет: Sобщ=500+60+2857+3000=6417 ВА = 6,417 кВА.

Ток электрической плитки Iп=Pп/Uф =Pп/(U· 1 ,73)=500/220=2,27 А.

Ток лампы Iл=Pл/Uл =60/220=0,27 А.

Ток электрической плиты определим по формуле мощности для трехфазного тока при cosфи =1 (активное сопротивление):

P= 1 ,73·U·I· cosфи = 1 ,73·U·I;

I=P/( 1 ,73·U)=3000/( 1 ,73 · 380)=4,56 А.

Ток двигателя IД=P/( 1,73 ·U· cosфи )=2000/( 1,73 ·380·0,7)=4,34 А.

В проводе фазы A течет ток двигателя и электрической плиты:

В фазе B течет ток двигателя, плитки и электрической плиты:

В фазе C течет ток двигателя, лампы и электрической плиты:

Везде даны действующие значения токов.

На рис. 4 показано защитное заземление З электрической установки. Нулевой провод заземляется наглухо у питающей подстанции и потребителя. Все части установок, к которым возможно прикосновение человека, присоединяются к нулевому проводу и тем самым заземляются.

При случайном заземлении одной из фаз, например C, возникает однофазное короткое замыкание и предохранитель или автомат этой фазы отключает ее от источника питания. Если человек, стоящий на земле, коснется неизолированного провода фаз A и B, то он окажется только под фазным напряжением. При незаземленной нейтрали фаза C не была бы отключена и человек оказался бы под линейным напряжением по отношениям к фазам A и B.

4. Какую подводимую к двигателю мощность покажет трехфазный ваттметр, включенный в трехфазную сеть с линейным напряжением U=380 В при линейном токе I=10 А и cosфи =0,7· К. п. д. двигателя =0,8 Чему равна мощность двигателя на валу (рис. 5)·

Ваттметр покажет подводимую к двигателю мощность P1 т. е. мощность полезную P2 плюс потери мощности в двигателе:

P1= 1,73 U·I· cosфи =1,73 · 380·10·0,7=4,6 кВт.

Полезная мощность, за вычетом потерь в обмотках и стали, а также механических в подшипниках

5. Трехфазный генератор отдает ток I=50 А при напряжении U=400 В и cosфи =0,7. Какая механическая мощность в лошадиных силах необходима для вращения генератора при к. п. д. генератора равна 0,8 (рис. 6)·

Активная электрическая мощность генератора, отдаваемая электродвигателю, PГ2=·(3·) U·I· cosфи =1,73·400·50·0,7=24220 Вт =24,22 кВт.

Механическая мощность, подводимая к генератору, PГ1 покрывает активную мощность PГ2 и потери в нем: PГ1=PГ2/Г =24,22/0,8 · 30,3 кВт.

Эта механическая мощность, выраженная в лошадиных силах, равна:

PГ1=30,3·1,36·41,2 л. с.

На рис. 6 показано, что к генератору подводится механическая мощность PГ1. Генератор преобразует ее в электрическую, которая равна

Эта мощность, активная и равна PГ2=1,73·U·I· cosфи , передается по проводам электродвигателю, в котором она преобразуется в механическую мощность. Кроме того, генератор посылает электродвигателю реактивную мощность Q, которая намагничивает двигатель, но в нем не расходуется, а возвращается в генератор.

Она равна Q=1,73·U·I·sinфи и не превращается ни в тепло, ни в механическую мощность. Полная мощность S=P· cosфи , как мы видели раньше, определяет только степень использования материалов, затраченных на изготовление машины. ]

6. Трехфазный генератор работает при напряжении U=5000 В и токе I=200 А при cosфи =0,8. Чему равен его к. п. д., если мощность, отдаваемая двигателем, вращающим генератор, равна 2000 л. с.

Мощность двигателя, поданная на вал генератора (если нет промежуточных передач),

Мощность, развиваемая трехфазным генератором,

PГ2=(3·)U·I· cosфи =1,73·5000·200·0,8=1384000 Вт =1384 кВт.

К. п. д. генератора PГ2/PГ1 =1384/1472=0,94=94%.

7. Какой ток проходит в обмотке трехфазного трансформатора при мощности 100 кВА и напряжении U=22000 В при cosфи =1

Полная мощность трансформатора S=1,73·U·I=1,73·22000·I.

Отсюда ток I=S/(1,73·U)=(100·1000)/(1,73·22000)=2,63 А. ;

8. Какой ток потребляет трехфазный асинхронный двигатель при мощности на валу 40 л. с. при напряжении 380 В, если его cosфи =0,8, а к. п. д.= 0,9

Мощность двигателя на валу, т. е. полезная, P2=40·736=29440 Вт.

Подводимая к двигателю мощность, т. е. мощность, получаемая из сети,

Ток двигателя I=P1/(1,73·U·I· cosфи )=32711/(1,73 · 380·0,8)=62 А.

9. Трехфазный асинхронный двигатель имеет на щитке следующие данные: P=15 л. с.; U=380/220 В; cosфи =0,8 соединение – звезда. Величины, обозначенные на щитке, называются номинальными.

Читайте также:  Измерение молекул средней массы

Чему равны активная, полная и реактивная мощности двигателя? Каковы величины токов: полного, активного и реактивного (рис. 7)?

Механическая мощность двигателя (полезная) равна:

Подводимая к двигателю мощность P1 больше полезной на величину потерь в двигателе:

Полная мощность S=P1/ cosфи =13/0,8=16,25 кВА;

Q=S·sinфи=16,25·0,6=9,75 кВАр (см. треугольник мощностей).

Ток в соединительных проводах, т. е. линейный, равен: I=P1/(1,73·U· cosфи )=S/(1,73·U)=16250/(1,731,7380)=24,7 А.

Активный ток Iа=I· cosфи =24,7·0,8=19,76 А.

Реактивный (намагничивающий) ток Iр=I·sinфи=24,7·0,6=14,82 А.

10. Определить ток в обмотке трехфазного электродвигателя, если она соединена в треугольник и полезная мощность двигателя P2=5,8 л. с. при к. п. д. =90%, коэффциенте мощности cosфи =0,8 и линейном напряжении сети 380 В.

Полезная мощность двигателя P2=5,8 л. с., или 4,26 кВт. Поданная к двигателю мощность

P1=4,26/0,9=4,74 кВт. I=P1/(1,73·U· cosфи )=(4,74·1000)/(1,73 · 380·0,8)=9,02 А.

При соединении в треугольник ток в обмотке фазы двигателя будет меньше, чем ток подводящих проводов: Iф=I/1,73=9,02/1,73=5,2 А.

11. Генератор постоянного тока для электролизной установки, рассчитанный на напряжение U=6 В и ток I=3000 А, в соединении с трехфазным асинхронным двигателем образует двигатель-генератор. К. п. д. генератора Г=70%, к. п. д. двигателя Д=90%, а его коэфициент мощности cosфи =0,8. Определить мощность двигателя на валу и подводимую к нему мощность (рис. 8 и 6).

Полезная мощность генератора PГ2=UГ·IГ=61,73000=18000 Вт.

Подводимая к генератору мощность равна мощности на валу P2 приводного асинхронного двигателя, которая равна сумме PГ2 и потерь мощности в генераторе, т. е. PГ1=18000/0,7=25714 Вт.

Активная мощность двигателя, подаваемая к нему из сети переменного тока,

P1 =25714/0,9=28571 Вт = 28,67 кВт.

12. Паровая турбина с к. п. д. ·Т=30% вращает генератор с к. п. д. = 92% и cosфи = 0,9. Какую подводимую мощность (л. с. и ккал/сек) должна иметь турбина, чтобы генератор обеспечивал ток 2000 А при напряжении U=6000 В (Перед началом расчета см. рис. 6 и 9.)

Мощность генератора переменного тока, отдаваемая потребителю,

PГ2=1,73 · U·I· cosфи =1,73·6000·2000·0,9=18684 кВт.

Подводимая к генератору мощность равна мощности P2 на валу турбины:

Подводимая к турбине при помощи пара мощность

или P1=67693·1,36=92062 л. с.

Подводимую мощность к турбине в ккал/сек определим по формуле Q=0,24·P·t;

13. Определить сечение провода длиной 22 м, по которому идет ток к трехфазному двигателю мощностью 5 л. с. напряжением 220 В при соединении обмотки статора в треугольник. cosфи =0,8; ·=0,85. Допустимое падение напряжения в проводах U=5%.

Подводимая к двигателю мощность при полезной мощности P2

По соединительным проводам протекает ток I=P1/(U·1,73· cosфи ) = 4430/(220·1,73·0,8)=14,57 А.

В трехфазной линии токи складываются геометрически, поэтому падение напряжения в проводе следует брать U : 1,73 , а не U : 2, как при однофазном токе. Тогда сопротивление провода:

где U – в вольтах.

Сечение проводов в трехфазной цепи получается меньшим, чем в однофазной.

14. Определить и сравнить сечения проводов для постоянного переменного однофазного и трехфазного токов. К сети подсоединены 210 ламп по 60 Вт каждая на напряжение 220 В, находящиеся на расстоянии 200 м, от источника тока. Допустимое падение напряжения 2%.

а) При постоянном и однофазном переменном токах, т. е. когда имеются два провода, сечения будут одинаковыми, так как при осветительной нагрузке cosфи =1 и передаваемая мощность

а ток I=P/U=12600/220=57,3 А.

Допустимое падение напряжения U=220·2/100=4,4 В.

Сопротивление двух проводов r=U/I·4,4/57,3=0,0768 Ом.

Для передачи мощности необходимо общее сечение проводов 2·S1=2·91,4=182,8 мм2 при длине провода 200 м.

б) При трехфазном токе лампы можно соединить в треугольник, по 70 ламп на сторону.

При cosфи =1 передаваемая по проводам мощность P=1,73·Uл·I.

Допустимое падение напряжения в одном проводе трехфазной сети не U·2 (как в однофазной сети), a U·1,73. Сопротивление одного провода в трехфазной сети будет:

Общее сечение проводов для передачи мощности 12,6 кВт в трехфазной сети при соединении в треугольник меньше, чем в однофазной: 3·S3ф=137,1 мм2.

в) При соединении в звезду необходимо линейное напряжение U=380 В, чтобы фазное напряжение на лампах было 220 В, т. е. чтобы лампы включались между нулевым проводом и каждым линейным.

Ток в проводах будет: I=P/(U:1,73)=12600/(380:1,73)=19,15 А.

Сопротивление провода r=(U:1,73)/I=(4,4:1,73)/19,15=0,1325 Ом;

Общее сечение при соединении в звезду – самое маленькое, что достигается увеличением напряжения тока для передачи данной мощности: 3·S3зв=3·25,15=75,45 мм2.

Источник

Особенности трехфазной сети

Время на чтение:

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

Читайте также:  Какими приборами можно измерить скорость движения воздуха

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

Источник