Меню

Как измерить напряжение солнечной батареи



Как проверить солнечную батарею тестером

Если Вы собираетесь купить солнечную батарею или уже её купили, наверняка Вам хочется проверить её работоспособность и узнать, соответствует ли её мощность паспортным данным.

Для того, чтобы проверить работу солнечной батареи, понадобится всего лишь мультиметр для измерения тока и напряжения, и ясная солнечная погода. Подробно о том, как проверить мощность солнечной панели мультиметром, читайте в новой статье на нашем сайте.

При покупке солнечной панели можно не только проверить её мощность, но и визуально определить, соответствует ли её качество заявленному продавцом. Для визуального определения качества панели сравните её с фотографиями солнечных батарей разного качества (от Grade C до Grade A+).

Если вместе с панелью Вы покупаете аккумулятор, то скорее всего Вам будет интересно, как проверить гелевый аккумулятор, как его хранить и правильно эксплуатировать.

А если для солнечной электростанции Вам нужен не один аккумулятор, то советуем ознакомиться с особенностями эксплуатации аккумуляторов при параллельном и последовательном соединении.

Выбирая оборудование для домашней солнечной электростанции, нужно обращать внимание не только на стоимость компонентов, но и на их качество. И если такие устройства, как инверторы, контроллеры заряда аккумуляторов, сами аккумуляторы в особых проверках не нуждаются, то этого нельзя сказать о самих солнечных модулях. Поэтому потенциальному покупателю домашней гелиевой электростанции будет полезно узнать, как проверить солнечную батарею, насколько она соответствует заявленным качеству и мощности.

Визуальная оценка качества солнечной батареи

Как правило, однотипные изделия различных производителей мало отличаются по цене друг от друга – разница составляет плюс-минус несколько процентов. Если же эта разница составляет десятки процентов, то есть повод задуматься над тем, что же все-таки предлагают вам купить.

В полной мере это относится к гелиевым батареям, которые вы собираетесь купить для вашей домашней электростанции. Стоимость фотоэлектрических преобразователей составляет примерно 65% от стоимости всего модуля. Поэтому, применяя компоненты более низкого качества, производители могут снижать стоимость панели, получая ценовое преимущество перед конкурентами. Но, покупая более дешевые изделия, вы рискуете через некоторое время столкнуться с тем, что купленные модули дают меньшую мощность, что сами панели выходят из строя, а может случиться и так, что град разобьет стекло. Вот чтобы этого не случилось, перед покупкой следует тщательно осмотреть солнечную батарею.

Для начала следует разобраться с классификацией показателей качества гелиевых модулей. Точно установить визуально класс качества невозможно, но определить хотя бы в первом приближении соответствие качества панели заявленному классу вполне реально. На панелях, как правило, указывается показатель качества: от класса «А» до класса «С». Стоимость гелиевых преобразователей класса «В» в среднем на 25% меньше стоимости преобразователей класса «А». В свою очередь, стоимость преобразователей класса «С» может быть в среднем на 75% меньше стоимости преобразователей класса «А».


Ячейка категории «А+»

Классы качества «А+» и «А++». При визуальном осмотре гелиевой панели не обнаружено каких-либо видимых повреждений, и все элементы панели имеют одинаковый цветовой оттенок.


Ячейка категории «А»

Преобразователи класса «А» могут иметь очень незначительные отличия в цветовой гамме, но не иметь видимых повреждений.


Ячейка категории «А-»

Если элементы имеют явные отличия в оттенках, но не имеют видимых механических повреждений, то таким элементам присваивается индекс «А-».


Ячейка «В»

Класс качества «В». В панелях с таким классом качества можно увидеть, что ее составные элементы имеют различные цвета и/или царапины длиной до 50 миллиметров.


Ячейка категории «В»

Могут также отсутствовать части токоведущих дорожек длиной не более пяти миллиметров.


Ячейка категории «С»

И, наконец, класс «С». Элементы, из которых составлена панель, имеют явно видимые отличия в цвете и/или очевидные механические повреждения, например, сколы кристалла по краям, царапины величиной более 50 миллиметров, отсутствие части токоведущих дорожек величиной более пяти миллиметров.

Оценка качества солнечной батареи по ее структуре и мощности

Прежде всего, следует знать, что гелиевые батареи категории «А» (все подкатегории) мощностью от 80 ватт до 300 ватт могут быть изготовлены только из целых ячеек со стороной квадрата 125 или 156 миллиметров. К примеру, солнечная батарея категории «А» с выходным напряжением 12 вольт и мощностью до 100 ватт, выполненная на базе монокристаллического кремния, должна быть собрана из 36 солнечных элементов размером 125×125 миллиметров. Любое другое количество ячеек, например, 72 элемента размером 62.5×125 миллиметров, говорит о том, что этот солнечный модуль, собранный из половинок ячеек, скорее всего, категории «В» или даже «С», так как никто не будет делать бессмысленную работу по резке ячеек категории «А» пополам.

Поликристаллических двенадцативольтовых модулей, имеющих мощность до 100 ватт и качество категории «А», не существует. Это обусловлено тем, что нет элементов подходящей мощности, выполненных на базе поликристаллического кремния, имеющих размеры 125×125 миллиметров. Такие модули собираются, как правило, из отбракованных по разным причинам элементов категорий «В» или даже «С», имеющих размеры 156×156 миллиметров. У этих элементов отрезают сколотые и бракованные фрагменты, подгоняя их под размеры примерно 104×156 миллиметров. Таких «модифицированных» элементов для модуля понадобится 36. Если исходные бракованные элементы не дают возможности собрать 36 элементов такого размера, то их режут на элементы 52×156 миллиметров, получая таким образом 72 элемента.

Двенадцативольтовая гелиевая панель категории «А» с заявленной мощностью от 140 ватт до 160 ватт должна содержать 36 моно- или поликристаллических кремниевых элементов размером 156×156 миллиметров. Любые другие варианты (например, 72 половинки размером 78×156 миллиметров) – это панели категории «В» или даже «С». Гелиевые панели мощностью 300 ватт категории «А» с выходным напряжением 24 вольта должны состоять из 72 гелиевых ячеек из моно- или поликристаллического кремния размером 156×156 миллиметров.

Что касается панелей, имеющих мощность менее 80 ватт, то их технически невозможно собрать из квадратных ячеек. Поэтому визуально идентифицировать класс такой панели, состоящей из нарезанных ячеек, не представляется возможным. Единственное, на что следует обратить внимание, так это на количество ячеек – у маломощной двенадцативольтовой панели категории «А» их не должно быть больше 36. Если количество ячеек превышает 36, то это свидетельствует о том, что перед вами панель категории «В» или «С».

Читайте также:  Цифровой измерение переменного напряжения измерение силы переменного тока

Кроме вышеперечисленного следует обратить внимание на то, каким образом был выполнен монтаж гелиевых ячеек. При автоматической сборке и монтаже олово на токоведущих шинах распределено равномерным тонким слоем. При ручной сборке и, соответственно, ручной пайке олово распределено не равномерно, можно увидеть наплывы, утончения, микрокаверны на наплывах. Большое значение также имеет стекло, которым накрыт корпус гелиевого модуля. Стекло это должно быть закаленным, структурированным с антибликовым покрытием. Для такого стекла характерна неровная поверхность, способствующая уменьшению потерь светового излучения из-за отражения света.

Проверка мощности солнечной батареи

Производители указывают в паспортных данных мощность, которую должна вырабатывать панель в ясный день при температуре +25°С и световом потоке 1000 Вт/м². При покупке не всегда могут быть такие погодные условия, но, тем не менее, с некоторой погрешностью (до 10%) можно проверить соответствие устройства заявленным данным. Для этого достаточно замерить мультиметром ток короткого замыкания и напряжение холостого хода модуля.


Проверка мощности

Перемножив эти значения с коэффициентом 0.78, вы получите ориентировочное значение мощности. Если полученное произведение отличается от заявленного не более чем на 10%, можно сделать вывод, что реальная мощность соответствует паспортным данным. Различие в 20%, 30% заставляет усомниться в качестве изделия.

Разумеется, квалифицированно проверить гелиевую батарею по всем параметрам можно только в специализированной лаборатории. Но описанные выше приемы позволят хотя бы в первом приближении оценить качество и мощность предполагаемой покупки.

В наши дни популярность альтернативных источников питания создает необходимость обладать определенными знаниями относительно их эксплуатации или настройки. Одной из главных преимуществ, для пожелавшего выбрать источник питания данного типа, является способность разбираться в том, как проверить работу солнечной батареи. Визуальная процедура проверки такой батареи основывается на сравнении цветовых оттенков, а также на наличие возможных повреждений поверхности.

Как проверить солнечную панель

Все батареи, которое сегодня можно купить по своему качеству относятся к классу А, В, или С. Человек, разбирающийся в том, как проверить солнечную батарею на соответствие одному из этих классов, понимает что нужно смотреть по количеству и размеру рабочих элементов, которые определяются мощностью источника питания.

Например, рассмотрев оригинальную монокристаллическую батарею А класса, имеющую мощность в пределах 80-100 Ватт можно понять, что она состоит из 36 частей, размерами 125 x 125 мм. Бываю случаи, когда вам предлагают товар с маркировкой данного класса, которая состоит из 72 элементов, с размеры которых 62 x 125 мм. Конечно же, по качеству данный источник питания следует отнести к классу B или C. Любому понятно, что никакой производитель не одобрит идею поделить 36 секторов класса А пополам.

Как проверить сколько ампер выдает солнечная панель самостоятельно

Перед тем, как проверить сколько ампер выдает солнечная панель, следует учесть следующие особенности работы данного вида приборов:

  • так как элементы данного источника питания не выйдут из строя в результате короткого замыкания, вы можете измерять, как напряжение на любом отдельном секторе, так и всей поверхности целиком;
  • производить любой замер лучше при нормальном дневном свете, так как при плохом освещении не удастся достичь желаемого результата.

Учитывая упомянутые особенности, проверку такого источника питания следует производить следующим способом:

  • произвести измерение с помощью вольтметра показания при холостом ходе (Voc);
  • измерять с помощью амперметра ток при коротком замыкании (Isc)
  • произвести расчет по формуле P = Voc * Isc * 0.78

Особенности конструкции солнечных батарей, влияющие на их качество

При поверке купленной батареи на соответствие качества нужно обратить внимание на следующие особенности ее конструкции:

  • Метод, по которому соединены отдельные фрагменты. В продажу поступают варианты поверхности с ручной пайкой, а также сборкой на автоматической линии. Отличительной особенностью первого варианта товара является неравномерное распределение пайки, которое можно легко определить визуально.
  • Особенность сборки оригинальной панели батареи предусматривает применение структурированного закаленного стекла. Неровность поверхности данного элемента является причиной уменьшения отражения солнечных лучей.

Многие люди, которые не могут самостоятельно разобраться в том, как проверить при выборе солнечную панель, обращают внимание на сертификаты качества. Стоит отметить, что в нашей стране производство данных источников питания осуществляется согласно следующих государственных стандартов:

  • ГОСТ 12.2.007.0-75 для электротехнических изделий.
  • ГОСТ Р 51597-2000 для солнечных фотоэлектрических элементов;

Также если вы заинтересованы в установке водной гелиосистемы, вам понадобится изготовление резервуаров. Емкость накопительного резервуара должна быть больше среднего дневного потребления воды в три-пять раз. Это стоит учесть. Также стоит учесть стоимость монтажа резервуара, которая определяется в каждом конкретном случае отдельно, так как она зависит от многих различных факторов. Можно говорить усреднено что монтаж обойдется в 50 % от стоимости накопительного резервуара и его навесного оборудования.

Источник

Схема тестера для проверки солнечных элементов

Всякий раз при работе с любым источником питания необходимо представлять себе, какова связь между собой напряжения и тока, а также зависимость их от нагрузки. В большинстве случаев взаимосвязь определяется законом Ома. К сожалению, кремниевые солнечные элементы являются нелинейными устройствами и их поведение нельзя описать простой формулой. Вместо нее для объяснения характеристик элемента можно пользоваться семейством простых для понимания кривых (рис. 1).

100 мВт/см2 соответствуют энергетической освещенности, создаваемой прямым потоком солнечного излучения на поверхности земли иа уровне моря в полдень при ясном небе; 75 мВт/см2 соответствуют 3/4; 50 мВт/см2 — 1/2; 25 мВт/см2 — 1/4 этой освещенности.

Рис. 1. Характеристика фотоэлектрического преобразователя

Исследовать вольтамперные характеристики (рис. 1) можно более детально с помощью схемы, представленной на рис. 2. В схеме измеряются выходные напряжения и ток, протекающий через переменную резистивную нагрузку. Будем предполагать, что интенсивность света в процессе измерения остается постоянной.

Читайте также:  Измерение реакции человека физика

Сначала с помощью потенциометра установим максимальное значение сопротивления. При этом фактически в цепи нет никакого тока и результирующее выходное напряжение можно считать равным напряжению холостого хода, представляющему собой напряжение, которое генерирует элемент, когда к нему не подключено никакой нагрузки. Оно составляет около 600 мВ (0,6 В). Величина этого напряжения может слегка изменяться при переходе от одного элемента к другому в одной партии и от одной фирмы-изготовителя к другой.

При уменьшении сопротивления резистора элемент все более нагружается. Как и в случае обычной батарейки питания, это вызывает возрастание потребляемого тока. Одновременно выходное напряжение слегка падает, как это и должно произойти с нестабилязированным источником питания. Пока в этом нет ничего удивительного.

Затем происходит нечто странное. Достигается такое положение, когда с уменьшением сопротивления нагрузки выходной ток более не увеличивается. Ничто не может привести к увеличению тока —>в даже короткое замыкание. На практике этот ток вполне справедливо называют током короткого замыкания.

В сущности, солнечный генератор стал источником постоянного тока. Возникает вопрос: что же с напряжением? Напряжение будет постоянно уменьшаться пропорционально возрастанию нагрузки.

Как только сопротивление нагрузки станет равным нулю, напряжение упадет до нуля. Кстати, короткое замыкание фотоэлектрического преобразователя не приводит к выходу его из строя.

Сила тока, которую может развить элемент, зависит от интенсивности света. Для первого измерения мы произвольно выбрали самый высокий уровень облученности, которому соответствует верхняя кривая (рис. 1). Каждая следующая кривая была получена на том же элементе при постепенном снижении интенсивности света.

Кривая мощности

Если необходимо построить график зависимости выходной мощности от напряжения, то в результате можно было получить нечто подобное изображенному на рис. 3. На одном конце графика имеется максимальный ток при нулевом напряжении. Конечно, никакой мощности в этой точке не выделяется из-за отсутствия напряжения. На другом конце графика имеется максимальное напряжение при нулевом токе, в результате чего мощность также не выделяется.

Между этими двумя пределами при работе фотоэлектрического преобразователя в нагрузке выделяется мощность, причем пиковая мощность выделяется лишь в одной точке. Именно в ней совокупность всех факторов обеспечивает отбор наибольшей энергии от солнечного элемента. Пиковая мощность соответствует напряжению около 450 мВ (0,45 В), что случайно совпало с перегибом кривой тока, показанной на рис. 1.

То, что семейство кривых тока имеет одинаковую форму, означает, что мы всегда получим максимальную мощность при одном и том же напряжении независимо от яркости солнца. Конечно, фактическая мощность будет зависеть от интенсивности солнечного излучения в данное время, однако пиковая мощность будет наблюдаться при одном и том же напряжении. Таким образом, чтобы правильно оценить качество кремниевого солнечного элемента, необходимо нагрузить его так, чтобы выходное напряжение равнялось 0,45 В, а затем измерить выходную мощность. Этот метод эффективен не только для сравнения элементов между собой в одинаковых условиях, но и для оценки качества отдельного элемента.

Разработка схемы тестера

Как уже было сказано, для тестирования солнечных элементов можно использовать схему, изображенную на рис. 2. Кстати, это быстрый и простой способ, в соответствии с которым после подключения элемента в указанную схему требуется всего лишь выставить соответствующее напряжение с помощью потенциометра и снять показания приборов, измеряющих напряжение и ток. Перемножив напряжение и ток, можно получить величину мощности.

Однако все элементы слегка различаются, и, следовательно, сопротивления, соответствующие пиковой мощности отдельных элементов, будут также различными» И в соответствии с этим необходимо каждый раз изменять сопротивление нагрузки, чтобы восстановись требуемое рабочее напряжение. Кроме того, энергия, вырабатываемая солнечным элементом, полностью рассеивается на потенциометре, обусловливая его нагрев и нестабильность.

Коренным решением данной проблемы была бы замена нагрузочного резистора в схеме. Что может быть лучше транзистора? Это прекрасная замена. В данном конкретном применении транзистор можно рассматривать как динамическое сопротивление.

Небольшой ток базы транзистора, задаваемый как показано на рис. 4, вызывает значительное изменение тока коллектора. Ток базы фактически изменяет сопротивление транзистора, которое в свою очередь используется в качестве нагрузки для солнечного элемента.

К сожалению, транзистор обладает тем же недостатком, что и потенциометр, т. е. необходимостью подстройки базового тока при смене тестируемого элемента. Такая операция незатруднительна при небольшом количестве элементов, но предположим, что вам необходимо проверить 30, 40 или больше элементов. Это отнимет слишком много времени.

Неплохо было бы найти способ автоматически подстраивать базовый ток без необходимости установки его каждый раз вручную. Было бы весьма желательно иметь параллельный стабилизатор напряжения.

Принцип работы схемы

Параллельный стабилизатор напряжения представляет собой регулятор, охваченный петлей обратной связи, использующей входное напряжение для управления током базы. Независимо от первоначального напряжения на входе параллельный стабилизатор изменяет свое шунтирующее сопротивление так, чтобы выходное напряжение поддерживалось на требуемом уровне.

В результате мы приходим к схеме, представленной на рис. 5, в которой для регулирования базового тока транзистора используется операционный усилитель. Резистор сопротивлением 220 Ом служит для ограничения тока базы.

Регулятор сравнивает входное напряжение, поступающее от фотоэлектрического преобразователя, с опорным напряжением.

Обычно в качестве источника опорного напряжения используется схема на стабилитроне. Однако в нашем случае потребовался бы стабилитрон с предельно низким напряжением стабилизации, желательно ниже 1 В. К сожалению, стабилитроны на такие напряжения либо весьма чувствительны к изменению температуры, либо дороги (обычно и то и другое вместе).

С другой стороны, прямосмещенный кремниевый диод может служить прекрасным низковольтным источником опорного напряжения.

Диод D1, прямое смещение на котором задано резистором определяет диапазон напряжений регулятора, ограничивая напряжение на регулировочном резисторе «калибровка». Опорное напряжение с движка этого потенциометра подается на неинвертирующий вход усилителя. На инвертирующий вход усилителя через резистор R3 подается напряжение фотоэлектрического преобразователя. Резистором R4 задается величина коэффициента усиления операционного усилителя (в данном случае она составляет 100).

Читайте также:  Процедура измерения предполагает сопоставление объекта явления или процесса с эталоном

Благодаря своей особенности операционный усилитель пытается выравнять напряжение на своих инвертирующем и неинвертирующем входах, управляя током, текущим через шунтирующий регулировочный транзистор Q1. Транзистор снижает входное напряжение до такой величины, что оно становится равным напряжению на отводе резистора VR1. Это напряжение может регулироваться в пределах 0—0,7 В.

Тем не менее реально транзистор не может иметь нулевого сопротивления, которое требуется, чтобы снизить напряжение до нуля. Как бы вы ни старались, на транзисторе сохранится небольшое остаточное напряжение величиной около 150 мВ. Это ограничивает диапазон регулирования в пределах 0,15—0,7 В.

Измерение напряжения на солнечном элементе осуществляется вольтметром Ml, а тока, протекающего через шунтирующий транзистор,— амперметром М2. Мощность (в ваттах) определяется перемножением показаний обоих приборов.

Вольтметр подключается непосредственно к элементу. Он представляет собой щитовой прибор, рассчитанный на ток 1 мА, с последовательным ограничивающим резистором R12, который позволяет индицировать 1 В при отклонении на полную шкалу.

С другой стороны, для измерения тока вместе с амперметром М2 используется операционный усилитель. Схема построена так, что ток эмиттера транзистора Q1 должен протекать через резистор R13. Этот ток соответствует току, генерированному солнечным элементом.

При протекании тока на резисторе R13 создается небольшое падение напряжения. Оно усиливается дифференциальным усилителем, напряжение на инвертирующий и неинвертирующий входы которого подается через резисторы #6 и #7 соответственно.

Величина коэффициента усиления контролируется резисторами R8—R10. Резистор R8 постоянно подключен между выходом и инвертирующим входом. Его сопротивление составляет 3 МОм, а соответствующее значение коэффициента усиления — 300. Когда через резистор #13 протекает ток, равный 100 мА, выходное напряжение усилителя составляет 1 В.

Выходное напряжение дифференциального усилителя измеряется вольтметром, идентичным вольтметру M1. Этот прибор отградуирован в единицах тока. В нашем случае напряжению 1 В соответствует ток 100 мА.

При подключении параллельно резистору R8 резистора R10 коэффициент усиления уменьшается до 60. В этом случае напряжению 1 В на выходе усилителя соответствует ток 500 мА, протекающий через R13. Таким образом мы расширили диапазон измеряемых токов, охватывающий значения 100—-500 мА. Аналогично при параллельном подключении резистора R9 к резистору r8 можно измерять токи в диапазоне 0—3 А.

Конструкция тестера

Хотя тестер для проверки солнечных элементов можно изготовить любым способом, настоятельно рекомендую использовать печатный монтаж. Печатная плата показана на рис. 6.

Детали схемы разместите согласно рис. 7 и припаяйте их, соблюдая полярность включения полупроводников. Обратите внимание на то, что шунтирующий транзистор Q1 расположен на фольгирован-ной стороне платы. Транзистор необходимо осторожно привинтить к большой медной площадке, выполняющей роль теплоотвода. При этом изолировать корпус транзистора не требуется.

Идеально резисторы R6 и R7 должны образовать согласованную дару. Однако точные резисторы дороги и их трудно приобрести. Поэтому я рекомендую взять небольшую группу резисторов номиналом 10 кОм и промерить их с помощью цифрового мультимера.

Чтобы найти два подходящих друг другу резистора, не потребуется много времени. Оставшиеся компоненты можно использовать в качестве резисторов R2 и R3.

С другой стороны, резистор 13 — не обычный резистор. Я сомневаюсь, что вы сможете найти подобный резистор в обычном магазине. Но его можно изготовить из отрезка проволоки длиной 10 см и диаметром 0,26 мм, которая обычно используется для обмоток. Намотайте проволоку на каркас (карандаш), чтобы полученная катушка точно разместилась на плате.

От точности подбора величины резистора R13 зависит точность измерения тока. С целью повышения точности можно начать с отрезка проволоки чуть длиннее 10 см и укорачивать его, контролируя величину тока по амперметру М2.

Два измерительных прибора, регулятор «калибровка» и переключатель диапазонов, размещаются вместе с печатной платой в любом подходящем корпусе. Соединяя эти компоненты, необходимо соблюдать полярность.

Для подачи питания прибора необходимы два 12-вольтных источника с выводами положительной и отрицательной полярности и общим заземленным проводом. Тип источников питания и величина напряжения не критичны. При желании питание тестера можно осуществить с помощью двух 9-вольтных батарей для транзисторных приемников. Схема одного из возможных источников питания показана на рис. 8.

Вероятно, сложнее всего найти или изготовить держатель с контактным устройством для солнечных элементов. Здесь необходимо самому проявить некоторую фантазию. Плоская алюминиевая пластинка размером чуть больше самого элемента может служить хорошим электродом, обеспечивающим соединение с тыльным1 контактом элемента, в то время как щуп от вольт-омметра будет прекрасным контактом к лицевой стороне солнечного элемента. Для авто-метизации тестирования, возможно, потребуется купить или изготовить особый зажим. Как я уже сказал, потребуется немного воображения и понимания того, что конкретно- необходимо.

Пользоваться тестером очень просто. Надо подключить элемент к схеме, осветить его и снять показания. Тыльный контакт элемента является положительным электродом и подсоединяется к положительному входу тестера. Токосъемная сетка на лицевой поверхности элемента является отрицательным электродом и присоединяется к заземленному выводу тестера.

Необходимо обеспечить надежный контакт с электродами элемента. Поскольку мы имеем дело с достаточно малым напряжением, даже небольшое сопротивление контактов может привести к значительной разнице в показаниях. Для обеспечения надежного соединения необходимо, чтобы контакты достаточно хорошо прижимались к элементу. Тем не менее следует избегать избыточного давления, так как элементы весьма тонкие, хрупкие и легко ломаются! Вот где пригодится хорошо продуманное контактное устройство для элементов.

Регулятором «калибровка» устанавливают рабочее напряжение, при котором производится измерение мощности. Оно обычно устанавливается один раз на уровне 450 мВ. Тем не менее при необходимости величину рабочего напряжения можно изменить. Короче говоря, при наличии тестера можно не гадать о параметрах элементов, а измерить их.

Источник