Как измерить оптическую плотность раствора

Как измерить оптическую плотность раствора?

При исследовании различных веществ в медицине, фармацевтике, химии и косметической промышленности нередко требуется знать их оптическую плотность. Как правило данная характеристика определяется в лабораториях, оснащенных современными спектрофотометрами, такими как В 1200.

Как проходит измерение

Метод измерения оптической плотности основана на воздействии на вещество с помощью источника излучения и дальнейшем анализе спектра пройденного света.

Подготовка оборудования и растворов:

  • включить прибор и подождать в течение 15 минут пока он прогреется;
  • одеть резиновые перчатки, чтобы избежать попадания грязи на посуду;
  • тщательно промыть пробирки или кюветы и высушить их;
  • залить в лабораторную посуду исследуемое вещество так, чтобы световой пучок проходил точно сквозь него;
  • приготовить контрольный раствор для проведения калибровки;
  • залить его во вторую пробирку;
  • протереть наружную поверхность пробирки или кюветы, чтобы исключить искажение результатов.

Теперь можно приступать непосредственно к самому измерению:

  • задать в программе спекрофотометра длину волны света;
  • разместить в держателе прибора пробирку с холостым раствором;
  • закрыть крышку спектрофотометра;
  • провести измерение;
  • записать показания, выдаваемые на стрелочном индикаторе или дисплее (в современных моделях);
  • выполнить калибровку оборудования;
  • достать пробирку с холостым раствором;
  • удостовериться в правильности калибровки, выполнив измерение без образца и повторно с холостым раствором;
  • разместить в держателе пробирку с образцом;
  • выполнить измерение;
  • подождать в течение 10 минут, пока стрелка прибора перестанет колебаться или цифры на дисплее не прекратят изменяться;
  • выполнить измерения для других длин волн.

Современное оборудование позволяет получить необходимые результаты без проведения дополнительных расчетов, что существенно упрощает задачу. Таким образов, в результате исследования с применением фотометра можно получить не только значения оптической плотности, но также узнать химическую формулу и концентрацию примесей.

Источник

Оптическая плотность раствора

Колориметрия

Из оптических методов анализа в практике аналитических лабораторий наиболее широко применяются колориметрические методы (от лат. color — цвет и греч. μετρεω — измеряю). Колориметрические методы основаны на измерении интенсивности светового потока, прошедшего через окрашенный раствор.

В колориметрическом методе используются химические реакции, сопровождающиеся изменением цвета анализируемого раствора. Измеряя светопоглощение такого окрашенного раствора или сравнивая полученную окраску с окраской раствора известной концентрации, определяют содержание окрашенного вещества в испытуемом растворе.

Существует зависимость между интенсивностью окраски раствора и содержанием в этом растворе окрашенного вещества. Эта зависимость, называемая основным законом светопоглощения (или законом Бугера—Ламберта—Бера), выражается уравнением:

I = I0 10 — ε c l

где I — интенсивность света, прошедшего через раствор; I0 — интенсивность падающего на раствор света; ε- коэффициент светопоглощения, постоянная величина для каждого окрашенного вещества, зависящая от его природы; С — молярная концентрация окрашенного вещества в растворе; l — толщина слоя светопоглощающего раствора, см.

Физический смысл этого закона можно выразить следующим образом. Растворы одного и того же окрашенного вещества при одинаковой концентрации этого вещества и толщине слоя раствора поглощают равное количество световой энергии, т. е. светопоглощение таких растворов одинаковое.

Для окрашенного раствора, заключенного в стеклянную кювету с параллельными стенками, можно сказать, что по мере увеличения концентрации и толщины слоя раствора его окраска увеличивается, а интенсивность света I, прошедшего через поглощающий раствор, уменьшается по сравнению с интенсивностью падающего света I0.

Рис.1 Прохождение света через кювету с исследуемым раствором.

Оптическая плотность раствора.

Если прологарифмировать уравнение основного закона светопоглощения и изменить знаки на обратные, то уравнение принимает вид:

Величина является очень важной характеристикой окрашенного раствора; ее называют оптической плотностью раствора и обозначают буквой A:

A = ε C l

Из этого уравнения вытекает, что оптическая плотность раствора прямо пропорциональна концентрации окрашенного вещества и толщине слоя раствора.

Другими словами, при одинаковой толщине слоя раствора данного вещества оптическая плотность этого раствора будет тем больше, чем больше в нем содержится окрашенного вещества. Или, наоборот, при одной и той же концентрации данного окрашенного вещества оптическая плотность раствора зависит только от толщины его слоя. Отсюда может быть сделан следующий вывод: если два раствора одного и того же окрашенного вещества имеют различную концентрацию, одинаковая интенсивность окраски этих растворов будет достигнута при толщинах их слоев, обратно пропорциональных концентрациям растворов. Этот вывод очень важен, так как на нем основаны некоторые методы колориметрического анализа.

Таким образом, чтобы определить концентрацию (С) окрашенного раствора, необходимо измерить его оптическую плотность (A). Чтобы измерить оптическую плотность, следует измерить интенсивность светового потока.

Интенсивность окраски растворов можно измерять различными методами. Различают субъективные (или визуальные) методы колориметрии и объективные (или фотоколориметрические).

Визуальными называются такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом.

При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах — фотоколориметрах, откуда и метод получил название фотоколориметрического.

Визуальные методы

К визуальным методам относятся:

1) метод стандартных серий;

2) метод дублирования (колориметрическое титрование);

3) метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине поглощающего слоя).

Растворы в колориметрии обычно имеют интенсивную окраску, поэтому имеется возможность определять весьма небольшие концентрации или количества веществ. Однако это может сопровождаться определенными трудностями: так навески для приготовления серии стандартных растворов могут быть очень малы. Для преодоления этих трудностей готовят стандартный раствор А достаточно высокой концентрации, например 1 мг/мл. После этого путем разбавления из раствора А готовят стандартный раствор В значительно меньшей концентрации, а из него в свою очередь готовят серию стандартных растворов.

Для этого в пробирки или кюветы одинакового размера и одинакового цвета стекла пипеткой добавляются необходимые объемы растворов реагентов в нужной последовательности. Порции растворов определяемого вещества целесообразно добавлять из бюретки, т.к. их объемы будут различны для обеспечения различных концентраций в серии стандартных растворов. При этом начальный раствор должен содержать все компоненты, кроме определяемого вещества (нулевой раствор). В исследуемый раствор добавляют растворы необходимых реагентов. Все растворы доводят до постоянного объема, а затем визуально сравнивают интенсивность окраски исследуемого раствора с растворами серии стандартных растворов. Возможно совпадение интенсивности окраски с каким-либо раствором серии. Тогда считается, сто исследуемый раствор имеет такую же концентрацию или содержит столько же определяемого вещества. Если же интенсивность окраски покажется промежуточной между соседними растворами серии, концентрация или содержание определяемого компонента считают средним арифметическим между растворами серии.

Колориметрическое титрование (метод дублирования). Этот метод основан на сравнении окраски анализируемого раствора с окраской другого раствора контрольного. Для приготовления контрольного раствора готовят раствор, содержащий все компоненты исследуемого раствора, за исключением определяемого вещества, и все употреблявшиеся при подготовке пробы реактивы, и к нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого раствора уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания.Этот метод основан на уравнивании окрасок анализируемого раствора и раствора с известной концентрацией определяемого вещества — стандартного раствора. Существуют два варианта выполнения колориметрического определения этим методом.

По первому варианту уравнивание окрасок двух растворов с разной концентрацией окрашенного вещества проводят путем изменения толщины слоев этих растворов при одинаковой силе проходящего через растворы светового потока. При этом, несмотря на различие концентраций анализируемого и стандартного растворов, интенсивность светового потока, проходящего через оба слоя этих растворов, будет одинакова. Соотношение между толщинами слоев и концентрациями окрашенного вещества в растворах в момент уравнивания окрасок будет выражаться уравнением:

где l1 — толщина слоя раствора с концентрацией окрашенного вещества C1, а l2-толщина слоя раствора с концентрацией окрашенного вещества C2.

В момент равенства окрасок отношение толщин слоев двух сравниваемых растворов обратно пропорционально отношению их концентраций.

На основании приведенного уравнения, измерив толщину слоев двух одинаково окрашенных растворов и зная концентрацию одного из этих растворов, легко можно рассчитать неизвестную концентрацию окрашенного вещества в другом растворе.

Для измерения толщины слоя, через который проходит световой поток, можно применять стеклянные цилиндры или пробирки, а при более точных определениях специальные приборы — колориметры.

По второму варианту, для уравнивания окрасок двух растворов с различной концентрацией окрашенного вещества, через слои растворов одинаковой толщины пропускают световые потоки различной интенсивности.

В этом случае оба раствора имеют одинаковую окраску, когда отношение логарифмов интенсивностей падающих световых потоков равно отношению концентраций.

В момент достижения одинаковой окраски двух сравниваемых растворов, при равной толщине их слоев, концентрации растворов прямо пропорциональны логарифмам интенсивностей падающего на них света.

По второму варианту определение может быть выполнено только с помощью колориметра.

Источник

ОПРЕДЕЛЕНИЕ ОПТИЧЕСКОЙ ПЛОТНОСТИ И КОНЦЕНТРАЦИИ

ОКРАШЕННЫХ РАСТВОРОВ ПРИ ПОМОЩИ КОНЦЕНТРАЦИОНОГО

ФОТОЭЛЕКТРИЧЕСКОГО КАЛОРИМЕТРА КФК– 2

Цель работы: изучить явление ослабления света при прохождении через вещество и фотометрические характеристики вещества, изучить устройство концентрационного фотоэлектрического калориметра КФК-2 и методику работы с ним, определить оптическую плотность и концентрацию окрашенного раствора с помощью КФК-2.

Приборы и принадлежности: калориметр фотоэлектрический концентрационный КФК – 2, исследуемый раствор, набор растворов стандартной концентрации.

Теория работы

При падении света на границу раздела двух сред свет частично отражается и частично проникает из первого вещества во второе. Световые электромагнитные волны приводят в колебательное движение как свободные электроны вещества, так и связанные электроны, находящиеся на внешних оболочках атомов (оптические электроны), которые излучают вторичные волны с частотой падающей электромагнитной волны. Вторичные волны образуют отраженную волну и волну, проникающую внутрь вещества.

В веществах с высокой плотностью свободных электронов (металлах) вторичные волны порождают сильную отраженную волну, интенсивность которой может достигать 95 % интенсивности падающей волны. Та же часть световой энергии, которая проникает внутрь металла, испытывает в нем сильное поглощение, и энергия световой волны превращается в тепловую. Поэтому металлы сильно отражают падающий на них свет и практически непрозрачны.

В полупроводниках плотность свободных электронов меньше, чем в металлах, и они слабее поглощают видимый свет, а в инфракрасной области вообще прозрачны. Диэлектрики поглощают свет избирательно и прозрачны только для определенных участков спектра.

В общем случае при падении света на вещество падающий световой поток Ф0 можно представить в виде суммы световых потоков:

, (1)

где Фr– отраженный, Фa– поглощенный, Фt– прошедший через вещество световой поток.

Явление взаимодействия света с веществом описывается безразмерными величинами, которые называются коэффициентами отражения , поглощения и пропускания . Для одного и того же вещества

Для непрозрачных тел t = 0; для идеально белых тел r = 1; для абсолютно черных тел a = 1.

Величина называется оптической плотностью вещества.

Коэффициенты r, a, t характеризуют фотометрические свойства вещества и определяются фотометрическими методами.

Фотометрические методы анализа широко применяются в ветеринарии, зоотехнии, почвоведении, технологии материалов. При исследовании веществ, растворенных в практически непоглощающем растворителе, фотометрические методы основаны на измерении поглощения света и на зависимости между поглощением и концентрацией растворов. Приборы, предназначенные для абсорбционного (абсорбция – поглощение) анализа прозрачных сред, называются спектрофотометрами и фотокалориметрами. В них при помощи фотоэлементов сравниваютcя окраски исследуемых растворов со стандартным.

Зависимость между поглощением света окрашенным раствором и концентрацией вещества подчиняется объединенному закону Бугера – Ламберта – Бера:

, (3)

где I0 – интенсивность потока света, падающего на раствор; I — интенсивность потока света, прошедшего через раствор; c — концентрация окрашенного вещества в растворе; l — толщина поглощающего слоя в растворе; k — коэффициент поглощения, который зависит от природы растворенного вещества, растворителя, температуры и длины световой волны.

Если с выражено в моль/л, а l — в сантиметрах, то k становится молярным коэффициентом поглощения и обозначается el, следовательно:

. (4)

Прологарифмировав (4), получим:

. (5)

Левая часть выражения (5) является оптической плотностью раствора. С учетом понятия оптической плотности закон Бугера – Ламберта – Бера примет вид:

т. е. оптическая плотность раствора при определенных условиях прямо пропорциональна концентрации окрашенного вещества в растворе и толщине поглощающего слоя.

На практике наблюдаются случаи отклонения от объединенного закона поглощения. Это происходит потому, что некоторые окрашенные соединения в растворе претерпевают изменения за счет процессов диссоциации, сольватации, гидролиза, полимеризации, взаимодействия с другими компонентами раствора.

Вид графика зависимости D = f(c) представлен на рис. 1.

Окрашенные соединения обладают избирательным поглощением света, т.е. оптическая плотность окрашенного раствора различна для различных длин волн па- дающего света. Измерение оптической плотности с целью определения концентрации раствора проводят в области максимального поглощения, т. е. при длине волны

падающего света близкой к lmax.

Для фотометрического определения концентрации раствора сначала строят калибровочный график D = f(c). Для этого готовят серию стандартных растворов. Затем измеряют величины их оптической плотности и строят график зависимости

D = f(c). Для его построения необходимо иметь 5 – 8 точек.

Экспериментально определив оптическую плотность исследуемого раствора, находят ее значение на оси ординат калибровочного графика D = f(c), а затем на оси абсцисс отсчитывают соответствующее значение концентрации сх.

Используемый в работе калориметр фотоэлектрический концентрационный КФК–2 предназначен для измерения отношения потоков света на отдельных участках длин волн в диапазоне 315 — 980 нм, выделяемых светофильтрами, и позволяет определять коэффициенты пропускания и оптической плотности жидких растворов и твердых тел, а также концентрации веществ в растворах методом построения градуировочных графиков D = f(c).

Принцип измерения фотокалориметром КФК–2 оптических характеристик веществ состоит в том, что на фотоприемник (фотоэлемент) направляются поочередно световые потоки — полный I0 и прошедший через исследуемую среду I и определяется отношение этих потоков.

Внешний вид фотокалориметра КФК–2 представлен на рис. 2. Он включает в

себя источник света, оптическую часть, набор светофильтров, фотоприемники и регистрирующий прибор, шкала которого откалибрована на показания светопропускания и оптической плотности. На лицевой панели фотокалориметра КФК – 2 имеются:

1 — микроамперметр со шкалой, оцифрованной в величинах коэффициента про-

пускания Т и оптической плотности D;

3 — ручка переключения светофильтров;

4 — переключатель кювет в световом пучке;

5 — переключатель фотоприемников «Чувствительность»;

6 — ручки «Установка 100»: «Грубо» и «Точно»;

7 — кюветное отделение.

Порядок выполнения работы

1. Включить прибор в сеть. Прогреть в течение 10 – 15 мин.

2. При открытом кюветном отделении установить стрелку микроамперметра на «0»

3. Установить минимальную чувствительность, для этого ручку «Чувствитель-

ность» переключить в положение «1», ручку «Установка 100» «Грубо» переключить в крайнее левое положение.

4. В световой пучок поместить кювету с растворителем или контрольным раство-

ром, по отношению к которому производится измерение.

5. Закрыть крышку кюветного отделения.

6. Ручками «Чувствительность» и «Установка 100» «Грубо» и «Точно» установить

отсчет 100 по шкале фотокалориметра. Ручка «Чувствительность» может находиться в одном из трех положений «1», «2», или «3».

7. Поворотом ручки «4» кювету с растворителем заменить кюветой с исследуемым

8. Снять отсчет по шкале микроамперметра, соответствующий коэффициенту про-

пускания исследуемого раствора в процентах, по шкале «Т» или по шкале «Д» — в единицах оптической плотности.

9. Измерения провести 3–5 раз и окончательное значение измеряемой величины оп-

ределить как среднее арифметическое из полученных значений.

10. Определить абсолютную погрешность измерения искомой величины.

Задание № 1. Изучение зависимости оптической плотности от длины

Волны падающего света

1.1. Для стандартного раствора определить оптическую плотность при различных частотах падающего света.

1.2. Данные занести в таблицу 1.

1.3. Построить график зависимости оптической плотности от длины волны l па-

дающего света D = f(l).

1.4. Определить l и номерсветофильтра для Dmax .

Маркировка светофильтра на диске Длина волны l, соответствующая max пропускания, нм Оптическая плотность D

Задание № 2. Проверка зависимости оптической плотности от толщины

Поглощающего слоя

2.1. Для стандартного раствора, используя светофильтр с lmax (см. задание № 1), определить D для кювет различного размера.

2.2. Данные занести в таблицу 2.

Рабочая длина микрокюветы, мм l
Оптическая плотность D

2.3. Построить график зависимости D = f(l).

Задание № 3. Построение калибровочного графика и определение концент-

Рации неизвестного раствора

3.1 . Для серии стандартных растворов известной концентрации, используя све-

тофильтр с lmax (см. задание № 1), определить D.

3.2. Данные измерений занести в таблицу 3.

№ стандартного раствора Концентрация с, % Оптическая плотность D
Контрольный раствор

3.3. Построить калибровочный график D = f(с).

3.4. По графику D = f(с) определить концентрацию неизвестного раствора.

Контрольные вопросы

1. Явление ослабления света при прохождении через вещество, механизм поглоще-

ния для разных типов вещества.

2. Параметры, характеризующие фотометрические свойства вещества.

3. Объясните сущность фотометрических методов анализа.

4. Сформулируйте объединенный закон поглощения Бугера–Ламберта–Бера.

5. Каковы причины возможных отклонений свойств растворов от объединенного за-

6. Молярный коэффициент поглощения, его определение и факторы, от которых он

7. Как осуществляется выбор длины волны поглощаемого излучения при фотокало-

1. Как строится калибровочный график?

2. Объясните устройство и принцип работы фотокалориметра КФК–2.

3. Где и для чего применяется абсорбционный анализ?

Литература

1. Трофимова Т. И. Курс физики. М.: Высш. шк., 1994. Часть 5, гл. 24, § 187.

2. Савельев И. В. Курс общей физики. М.: Наука, 1977. Том 2, часть 3, гл. XХ,

3. Грабовский Р. И. Курс физики. С-Пб.: Лань. 2002. Часть П, гл. VI, § 50.

ЛАБОРАТОРНАЯ РАБОТА № 4–03

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector