Как измерить периметр равнобедренного треугольника

Как найти периметр треугольника

О чем эта статья:

Определение

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.

Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Как узнать периметр треугольника

Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.

Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.

P = a + b + c, где a, b, c — длина стороны.

Если известна площадь и радиус вписанной окружности:

P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.

Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:

P = √ b 2 + с 2 — 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.

Если известна одна сторона в равностороннем треугольнике:

P = 3 * a, где a — длина стороны.

Все стороны в равносторонней фигуре равны.

Если известна боковая сторона и основание в равнобедренном треугольнике:

P = 2 * a + b, где a — боковая сторона, b — основание.

Боковые стороны в равнобедренной фигуре равны.

Если известна боковая сторона и высота в равнобедренном треугольнике:

P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.

Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.

Если известны катеты в прямоугольном треугольнике:

P = √ a 2 + b 2 + (a + b), где a, b — катеты.

Катет — одна из двух сторон, которые образуют прямой угол.

Если известны катет и гипотенуза в прямоугольном треугольнике:

P = √ c 2 — a 2 + (a + c), где a — любой катет, c — гипотенуза.

Гипотенуза — сторона, которая лежит напротив прямого угла.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Запишись на дополнительные уроки по математике онлайн для учеников с 1 по 11 классы!

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Лето — прекрасное время, чтобы заниматься ей с удовольствием, в комфортном темпе, без контрольных и оценок за четверть, валяясь дома на полу или за городом на травке.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.

Источник

Периметр равнобедренного треугольника

Чтобы найти периметр равнобедренного треугольника, нужно знать всего две его стороны — основание и боковую сторону.

В общем случае формула для нахождения периметра треугольника выглядит так:

где a, b и c — длины сторон треугольника.

две стороны равны (боковые),

формулу можно упростить:

Таким образом, периметр равнобедренного треугольника равен сумме длин основания и удвоенной боковой стороны:

Соответственно, периметр равнобедренного треугольника ABC можно найти по формуле:

(здесь AC — основание, AB — боковая сторона).

1) Найти периметр равнобедренного треугольника, если его основание равно 4 см, а боковая сторона — 9 см.

Здесь а=4 см, b=9 см. По формуле Р=а+2b имеем: P=4+2∙9=22 (cм).

2) Периметр равнобедренного треугольника равен 170 см, а его основание — 60 см. Найти боковую сторону треугольника.

Здесь а=60 см, Р=170 см. По формуле Р=а+2b, 2b=Р-а, b=(Р-а):2, b=(170-60):2=55 (см).

Задача нахождения периметра равностороннего треугольника решается еще проще. Её мы рассмотрим в следующий раз.

Источник

Периметр равнобедренного треугольника

Формула вычисления периметра

Боковые стороны равнобедренного треугольника равны между собой. Это вытекает из определения и хорошо видно даже из названия фигуры. Именно из этого свойства и вытекает формула периметра:

P=2a+b, где b – это основание треугольника, a – значение боковой стороны.

Рис. 1. Равнобедренный треугольник

Из формулы видно, что для нахождения периметра достаточно знать величину основания и одной из боковых сторон. Рассмотрим несколько задач на нахождение периметра равнобедренного треугольника. Задачи будем решать по мере возрастания сложности, это позволит лучше понять способ размышления, которому нужно следовать для нахождения периметра.

Задача 1

  • В равнобедренном треугольнике основание равно 6, а высота, проведенная к этому основанию, равна 4. Необходимо найти периметр фигуры.

Рис. 2. Рисунок к задаче 1

Высота равнобедренного треугольника, проведенная к основанию, является также медианой и биссектрисой. Это свойство очень часто используется при решении задач, связанных с равнобедренными треугольниками.

Треугольник АВС высотой ВM делится на два прямоугольных треугольника: АВM и ВСM. В треугольнике АВM катет ВM известен, катет АM равен половине основания треугольника АВС, так как ВM является медианой, биссектрисой и высотой. По теореме Пифагора найдем значение гипотенузы АВ.

Найдем периметр: P=AC+AB*2=6+5*2=16

Задача 2

  • В равнобедренном треугольнике высота, проведенная к основанию, равна 10, а острый угол при основании 30 градусам. нужно найти периметр треугольника.

Рис. 3. Рисунок к задаче 2

Эта задача осложнена отсутствием сведений о сторонах треугольника, но, зная значение высоты и угла, в прямоугольном треугольнике ABH можно найти катет AH, а после решение пойдет по тому же сценарию, что и в задаче 1.

Найдем AH через значение синуса:

$$sin (ABH)==<1\over2>$$ – синус 30 градусов является табличным значением.

Выразим нужную сторону:

Через котангенс найдем значение AH:

$$AH=>=10*\sqrt<3>=17,32$$ – получившееся значение округлим до сотых.

Теперь, когда все требуемые значения найдены, определим периметр:

Задача 3

  • В равнобедренном треугольнике ABC известна площадь, которая равна $$16\over\sqrt<3>$$ и острый угол при основании 30 градусов. Найти периметр треугольника.

Значения в условии часто приводятся в виде произведения корня на число. Это делается, чтобы максимально оградить последующее решение от погрешностей. Округлять результат лучше в конце вычислений

При такой постановке задачи может показаться, что решений нет, ведь сложно выразить одну из сторон или высоту из имеющихся данных. Попробуем решить по-другому.

Обозначим высоту и половину основания латинскими буквами: BH=h и AH=a

Тогда основание будет равно: AC=AH+HC=AH*2=2a

С другой стороны, значение h можно выразить из треугольника ABH через тангенс острого угла. Почему именно тангенс? Потому что в треугольнике ABH мы уже обозначили два катета a и h. Нужно выразить одно через другое. Два катета вместе связывают тангенс и котангенс. Традиционно к котангенсу и косинусу обращаются, только если не подходит тангенс или синус. Это не правило, можно решать так, как удобно, просто так принято.

Подставим полученное значение в формулу площади.

Подставим значение a в формулу площади и определим значение высоты:

Через теорему Пифагора найдем боковую сторону треугольника:

Подставим значения в формулу периметра:

Что мы узнали?

Мы разобрались подробно во всех тонкостях нахождения периметра равнобедренного треугольника. Решили три задачи разного уровня сложности, показав на примере, как решаются типовые задачи на решение равнобедренного треугольника.

Источник

Формула периметра равнобедренного треугольника

Периметр равнобедренного треугольника ABC , длины сторон которого соответственно равны: боковые стороны AB = BC = a , основание AC = b вычисляется по формуле:

Периметр равнобедренного треугольника вычисляется по формуле:

\( P_ <\Delta ABC>= a + b + c = 2 \cdot a + b\)

где a,b,c – стороны равнобедренного треугольника.

Основные понятия, справедливые для треугольников

  • Сумма углов треугольника равна 180°.
  • Высота – это отрезок перпендикуляра, опущенного из вершины на противоположную сторону.
  • Центр описанной окружности лежит на пересечении медиатрис.
  • Медиатриса – это перпендикулярна прямая, проходящая через середину стороны.
  • Центр вписанной окружности лежит на пересечении биссектрис углов.
  • Биссектриса угла делит угол на две равные части.
  • Медиана – это отрезок, соединяющий вершину с серединой противоположной стороны.
  • Медианы пересекаются в центре тяжести, который делит каждую медиану в отношение 2:1.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.

© 2021 Все калькуляторы online

Копирование материалов запрещено

Источник

Как найти периметр равнобедренного треугольника

Формула

Чтобы найти периметр равнобедренного треугольника $ABC$, нужно к длине его основание прибавить удвоенную длину боковой стороны.

Периметр равнобедренного треугольника — это сумма длин его сторон. У равнобедренного треугольника боковые стороны равны. Поэтому если $a$ — длина основания равнобедренного треугольника, а $b$ — длина боковых сторон, то периметр равен

Примеры вычисления периметра равнобедренного треугольника

Задание. В равнобедренном треугольнике $ABC$ основание равно 7 м, а длины боковых сторон — 4 м. Найти его периметр.

Решение. Воспользуемся формулой для нахождения периметра равнобедренного треугольника

Тогда искомый периметр равен:

Ответ. $P_<\Delta A B C>=15$ (м)

Как найти периметр равнобедренного треугольника не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Найти периметр равнобедренного треугольника $ABC$, если его основание равно $a=8$ см и каждая из боковых сторон $b$ составляют 75% от основания.

Решение. Найдем длину боковой стороны, для этого найдем 75% от длины основания:

$b=8 \cdot 0,75=6$ (см)

Для вычисления периметра равнобедренного треугольника воспользуемся формулой:

Тогда периметр $ABC$ равен:

Ответ. $P_<\Delta A B C>=20$ (см)

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector