Как измерить предметы оптически

Содержание
  1. Определение расстояний
  2. Определение расстояний на местности различными способами
  3. Определение расстояния по пальцу
  4. Определение расстояния на глаз
  5. Ориентирование по звуку
  6. Сделай сам своими руками О бюджетном решении технических, и не только, задач.
  7. Самые интересные ролики на Youtube
  8. Лайфхак – измеряем линзы своими руками
  9. Пролог
  10. Небольшой экскурс в оптическую геометрию
  11. Светодиод как точечный источник света
  12. Как измерить фокусное расстояние собирающей линзы?
  13. Как вычислить оптическую силу собирающей линзы в диоптриях?
  14. Как измерить фокусное расстояние рассеивающей очковой линзы?
  15. Как вычислить оптическую силу рассеивающей линзы в диоптриях?
  16. Как измерить межцентровое расстояние или расстояние между зрачками?
  17. Как измерить расстояние между оптическими осями очковых линз?
  18. Мелкие подробности
  19. Дополнительные материалы
  20. Близкие темы
  21. Комментарии (16)

Определение расстояний

При нахождении в незнакомой местности, особенно, если карта недостаточно подробная с условной привязкой координат или с отсутствием таковой вообще, возникает необходимость ориентироваться на глаз, определяя расстояние до цели различными способами. У опытных путешественников и охотников определение расстояний осуществляется не только с помощью многолетней практики и навыков, но и специального инструмента – дальномера. Используя это оборудование, охотник может с точностью определить расстояние до животного, чтобы убить его одним выстрелом. Дистанция измеряется лазерным лучом, прибор работает от аккумуляторных батареек. Применяя это устройство на охоте или при других обстоятельствах, постепенно вырабатывается способность определения расстояния на глаз, поскольку при его использовании всегда сравниваются реальное значение и показание лазерного дальномера. Далее будут описаны способы определения расстояний без использования специального оборудования.

Определение расстояний на местности различными способами

Определение расстояний на местности осуществляется разнообразными способами. Некоторые из них относятся к разряду снайперских методов или военно-разведочных. В частности, во время ориентирования на местности обычному туристу могут пригодиться следующие:

Этот способ часто используется для составления карт местности. Как правило, шаги считаются парами. Отметка производится после каждой пары или тройки шагов, после этого вычисляется расстояние в метрах. Для этого количество пар или троек шагов умножается на длину одной пары или тройки.

Все предметы видны под определенными углами. Зная этот угол, можно измерить дистанцию между объектом и наблюдателем. Учитывая, что 1 см с расстояния 57 см виден под углом 1 градус, можно за эталон измерения этого угла взять ноготь большого пальца вытянутой вперед руки, равного 1 см (1 градус). Весь указательный палец является эталонно 10 градусов. Прочие эталоны сведены в таблицу, которая поможет ориентироваться в измерении. Зная угол, можно определить длину объекта: если он закрывается ногтем большого пальца, значит, он находится под углом 1 градус. Следовательно, от наблюдателя до объекта приблизительно 60 м.

Определяется разница между вспышкой света и звуком по секундомеру. Исходя из этого вычисляется расстояние. Как правило, таким образом, вычисляется нахождением огнестрельного оружия.

  1. По спидометру
  2. По времени скорости движения
  3. По спичке

На спичку наносятся деления, равные 1 мм. Держа в руке, ее нужно вытянуть вперед, держать горизонтально, при этом закрыть один глаз, затем совместить ее один конец с верхней частью определяемого предмета. После этого нужно продвигать ноготь большого пальца до основания объекта и вычислить дистанцию по формуле: расстояние до предмета, равное его высоте разделить на расстояние от глаз наблюдателя до спички, равное отмеченному количеству делений на спичке.

Определение расстояния по пальцу

Способ определения расстояния на местности с помощью большого пальца руки помогает вычислить нахождение как движущегося, так и неподвижного предмета. Для вычисления нужно вытянуть руку вперед, поднять большой палец вверх. Нужно закрыть один глаз, при этом, если цель передвигается слева направо, закрывается левый глаз и наоборот. В момент, когда цель закроется пальцем, нужно закрыть другой глаз, открыв тот, который был закрыт. При этом объект окажется отодвинутым назад. Теперь необходимо сделать подсчет времени (или шагов, если наблюдение идет за человеком), до того момента, когда объект снова закроется пальцем. Вычисляется расстояние до цели просто: количество времени (или шагов пешехода) до закрытия пальцем второй раз, умноженное на 10. Полученное значение переводится в метры.

Определение расстояния на глаз

Метод распознавания дистанции на глаз является самым простым, но требует практики. Это самый распространенный способ, поскольку не требует использования каких-либо приспособлений. Способов глазомерного определения расстояния до цели существует несколько: по отрезкам местности, степени видимости объекта, а также его приблизительной величине, которая кажется на глаз. Для тренировки глазомера нужно практиковаться, сравнивая кажущееся расстояние до цели с перепроверкой по карте или шагами (при этом можно использовать шагомер). При этом способе важно закрепить в памяти некие эталоны меры дистанции (50,100,200,300 метров), которые затем мысленно откладывать на местности, и оценивать примерную дистанцию, сравнивая реальное значение и эталонное. Закрепление в памяти конкретных отрезков дистанции также требует практики: для этого нужно запомнить привычное расстояние от одного предмета до другого. При этом нужно учитывать, что величина отрезка сокращается с увеличением расстояния до него.

Степень видимости и различимости объектов влияет на установку дистанции до них невооруженным глазом. Существует таблица предельных расстояний, ориентируясь на которую, можно представить приблизительную дистанцию до объекта, который можно увидеть человеку с нормальной остротой зрения. Этот способ рассчитан на примерное, индивидуальное нахождение дальностей предметов. Так, если в соответствии с таблицей, черты лица человека становятся различимы со ста метров, это означает, что в реальности до него расстояние составляет не точно 100 м., а не более того. Для человека с низкой остротой зрения необходимо делать индивидуальные поправки касательно таблицы-ориентира.

При установлении дистанции до объекта с помощью глазомера следует учитывать следующие особенности:

  • Ярко освещенные предметы, так же как и объекты, обозначенные ярким цветом, кажутся ближе истинного расстояния. Это нужно учитывать, если вы заметили костер, пожар или сигнал бедствия. То же самое касается и крупных объектов. Мелкие кажутся меньше.
  • В сумерки, наоборот, все объекты кажутся дальше. Аналогичная ситуация складывается во время тумана.
  • После дождя при отсутствии пыли цель всегда кажется более близкой, чем на самом деле.
  • Если солнце расположено впереди наблюдателя, нужная цель будет казаться более близкой, чем на самом деле. Если оно расположено сзади, расстояние до искомой цели больше.
  • Цель, расположенная на ровном берегу всегда будет казаться ближе, чем на холмистом. Это объясняется тем, что неровности рельефа скрадывают расстояние.
  • При взгляде с высокой точки вниз предметы будут казаться ближе, чем при рассмотрении их снизу вверх.
  • Предметы, расположенные на темном фоне всегда кажутся дальше, чем на светлом фоне.
  • Дистанция до объекта кажется меньше, если наблюдаемых целей в поле зрения очень мало.

Следует помнить, что, чем больше расстояние до определяемой цели, тем более вероятна ошибка в расчетах. К тому же, чем больше натренирован глазомер, тем более высокой точности расчетов можно добиться.

Ориентирование по звуку

В случаях, когда определение расстояния до цели глазомером невозможно, например, в условиях плохой видимости, сильно пересеченной местности или ночью, можно ориентироваться по звукам. Эта способность также должна быть натренирована. Опознавание дальности цели по звукам обусловлено различными погодными условиями:

  • Четкий звук человеческой речи слышен издалека в условиях тихой летней ночи, если пространство при этом открытое. Слышимость может достигать 500м.
  • Речь, шаги, различные звуки отчетливо слышны в морозную зимнюю или осеннюю ночь, а также туманную погоду. В последнем случае трудно определить направление объекта, поскольку звук отчетливый, но рассеянный.
  • В безветренном лесу и над спокойной водой звуки разносятся очень быстро, а дождь сильно приглушает их.
  • Сухая земля лучше передает звуки, чем воздух, особенно ночью.

Чтобы определить нахождение цели, существует таблица соответствия дальности слышимости характерам звука. Если ее применять, можно ориентироваться на наиболее часто встречающиеся в каждой местности объекты (крики, шаги, звуки автотранспорта, выстрелы, разговоры и прочее).

Источник

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Как измерить очковые линзы и межцентровое расстояние?

Тема этой статьи – измерение оптической силы положительных и отрицательных очковых линз, и межцентрового расстояния в домашних условиях. И те, и другие параметры нужны, как для составления рецепта, так и для выявления дефектов очков при ощущении дискомфорта.

Самые интересные ролики на Youtube

Лайфхак – измеряем линзы своими руками

Пролог

Доброго здоровья друзья!

Недавно мне потребовалось срочно заказать бифокальные очки для работы, а для этого потребовался рецепт. Идти к врачу было хлопотно и дорого. Да и измерения, сделанные впопыхах, вовсе не гарантировали идеальный результат, в чём я уже не раз убеждался.

По сути ведь приходится платить за то, что у врача есть набор линз и линейка. В кабинетах же, оснащённых современным оборудованием, тарифы и вовсе какие-то заоблачные, хотя результатом является всё тот же небольшой клочок бумаги.

Но, ведь некоторый набор линз и линейка обычно имеются у каждого очкарика с многолетним стажем, особенно, если вдобавок он ещё и самодельщик.

В спокойной, домашней обстановке, подобрать линзы несложно, но как определить оптическую силу линз, чтобы можно было заполнить рецепт?

Конечно, можно было бы напрячься и узнать местонахождение мастерской, где врезают линзы в оправы, а потом попытаться за некоторую плату измерить все свои линзы на линзметре (диоптриметре).

Но, я всё же решил сделать всё своими руками, поэтому первым делом отправился в Интернет, чтобы найти инструкцию по замеру этого параметра в домашних условиях.

Но, как часто бывает, советы умозрительных специалистов из сети оказались полностью неработоспособными. Так что, пришлось разрабатывать собственную технологию подобных измерений.

Результатом этих трудов стала данная статья и новые бифокальные очки, которые совершенно не утомляют ни глаза, ни голову. Кроме этого, я узнал почему некоторые очки не прижились у меня на носу.

А теперь обо всём этом подробнее.

Небольшой экскурс в оптическую геометрию

Вспомним школьный курс оптической геометрии, чтобы понять, для чего нам придётся измерять фокусное расстояние линзы.

Всё дело в том, что оптическая сила линзы – величина, обратно пропорциональная фокусному расстоянию.

D = 1/F

D – оптическая сила в диоптриях,

F – фокусное расстояние в метрах.

Например, линза с оптической силой в +3 диоптрии, будет иметь следующее фокусное расстояние:

F = 1/D = 1/3 ≈ 0,33(метра)

Помните, как в детстве мы выжигали дырочки в бумаге с помощью папиной лупы?

Формула, описывающая процесс этой забавы выглядит так:

D = 1/L + 1/Lsun = 1/L + 1/∞ ≈ 1/L

D – оптическая сила в диоптриях

L – расстояние от оптического центра линзы до бумаги

Lsun – расстояние от Солнца до оптического центра линзы (можно принять равным бесконечности)

Но, Солнце слишком яркий и слишком громоздкий источник света, который, к тому же, может быть недоступен довольно длительное время.

Хотя, я и попробовал использовать наше светило для этого замера, точность измерений оказалось недостаточной. А вот использование точечного источника света позволило получить вполне приемлемые результаты.

Светодиод как точечный источник света

В качестве точечного источника света, можно использовать фонарик на одном светодиоде без рассеивателя.

Или смартфон, имеющий подсветку камеры.

Если нет ни того, ни другого, то можно всего за 10 центов приобрести на радиорынке сверхъяркий светодиод, как его называют продавцы.

Подключить светодиод к источнику питания несложно, но нужно выполнить два условия.

1. Напряжение источника питания должно быть заведомо выше падения напряжения на светодиоде. В белых светодиодах с прозрачной линзой три отдельных N-P перехода (RGB), поэтому и падение напряжения на них втрое выше, чем на обычных цветных светодиодах, и составляет около 3,5 Вольт.

2. Ток светодиода нужно ограничить, и проще всего это сделать с помощью балластного резистора. Если предельный ток неизвестен, то для бюджетных сверхъярких светодиодов диаметром 5мм можно выбрать значение 30-40мА.

Рассчитать балластный резистор можно по формуле:

R – сопротивление балластного резистора

UBat – напряжение источника питания

UVD1 – падение напряжения на светодиоде

I – ток светодиода

Как измерить фокусное расстояние собирающей линзы?

Так как определить на глаз положение оптического центра очковой линзы сложно, если вообще возможно, то мы будем ориентироваться по краю линзы. Главное, чтобы это был один и тот же край, так как, нам придётся сделать два измерения, повернув очки на 180 градусов.

Это немного усложнит вычисления, но и тут я для вас нашёл весьма простое решение, о котором расскажу чуть ниже.

Расположим лист белой бумаги (далее – мишень) так, чтобы обеспечить максимально-возможное расстояние до нашего точечного источника света. Измерим это расстояние с помощью рулетки или ниток.

Приставим к мишени линейку.

Сфокусируем изображение светодиода на мишени, стараясь обеспечить параллельность оптической оси линзы с линейкой.

Определим положение края линзы относительно линейки и зафиксируем результат измерений.

Повернём очки на 180 градусов и снова измерим расстояние.

В обоих случаях, измеряем расстояние между мишенью и одним и тем же краем одной и той же линзы! Это важно!

Внимание! У большинства канцелярских линеек край линейки не соответствует началу шкалы. Поэтому, в результаты измерений следуют внести поправку.

В моём случае, эта поправка равна 10см, так как я совместил плоскость мишени с отметкой 10см.

Как вычислить оптическую силу собирающей линзы в диоптриях?

Рассчитаем оптическую силу собирающей линзы (это когда диоптрии со знаком плюс) по следующей формуле:

Ds = 1/( S1*S2)^0,5+1/L

Ds – оптическая сила собирающей линзы в диоптриях

S1 – первый замер расстояния между собирающей линзой и мишенью в метрах

S2 – второй замер расстояния между собирающей линзой и мишенью в метрах

L – расстояние между светодиодом и мишенью в метрах

Но, лучше скопируйте следующий ниже текст в окно портативного калькулятора, который можно скачать из «Дополнительных материалов» к статье.

Затем внесите данные наших измерений в окно калькулятора и нажмите Enter на клавиатуре или «=» в окне калькулятора.

\\От мишени до светодиода (метр)
L=
\\От мишени до собирающей линзы (метр)
S1=
S2=
\\Оптическая сила собирающей линзы (диоптрия)
Ds=1/(S1*S2)^0,5+1/L

Вот так будет выглядеть расчёт собирающей очковой линзы – положительного мениска. Красным цветом выделены результаты измерений и ответ в диоптриях. Результат следует округлить до 1/4 диоптрии.

Как измерить фокусное расстояние рассеивающей очковой линзы?

С измерением оптической силы рассеивающей линзы (это когда диоптрии со знаком минус), всё будет чуточку сложнее.

Для замеров нам понадобится собирающая линза с оптической силой, превышающей оптическую силу рассеивающей линзы по абсолютной величине.

Проще говоря, диоптрий с плюсом должно быть заведомо больше чем предполагаемых диоптрий с минусом. В большинстве случаях, подойдёт обычная ручная лупа, линза от конденсора фотоувеличителя, макро линза от фотокамеры и т.д.

Чтобы убедиться в правильном выборе дополнительной линзы, прикладываем её к очкам. Система линз должна увеличивать изображение.

Сначала, как было описано выше, производим два замера для дополнительной лупы с поворотом на 180 градусов и записываем результаты. Как и прежде, для получения этих значений, используем один и тот же край лупы или её оправы. Это важно!

Затем, закрепляем на оправе лупу с помощью кольцевой резинки.

Снова делаем два замера с поворотом всей этой оптической системы на 180 градусов.

В итоге, мы должны получить пять результатов измерений, если считать и расстояние от мишени до источника света.

Как вычислить оптическую силу рассеивающей линзы в диоптриях?

Для расчёта оптической силы рассеивающей линзы используем следующие выражения:

Ds=1/(S1*S2)^0,5+1/L

Dw=1/(R1*R2)^0,5+1/L

Dr=Dw-Ds

L – расстояние между светодиодом и мишенью в метрах

S1 – первый замер расстояния от мишени до собирающей линзы в метрах

S2 – второй замер расстояния от мишени до собирающей линзы в метрах

R1 – первый замер расстояния от мишени до системы линз в метрах

R2 – второй замер расстояния от мишени до системы линз в метрах

Ds – оптическая сила собирающей линзы в диоптриях

Dw – оптическая сила системы линз в диоптриях

Dr – оптическая сила рассеивающей линзы в диоптриях

Я нарочно разбил формулу на три части, чтобы были видны промежуточные результаты в программе «Калькулятор-блокнот».

Просто скопируйте следующий ниже текст в окно калькулятора и внесите туда же полученные вами пять значений: L, S1, S2, R1, R2. Затем нажмите Enter, чтобы узнать оптическую силу рассеивающей линзы в диоптриях.

\\От мишени до светодиода (метр)
L=
\\От мишени до лупы (метр)
S1=
S2=
\\От мишени до системы линз (метр)
R1=
R2=
\\Оптическая сила лупы (диоптрия)
Ds=1/(S1*S2)^0,5+1/L
\\Оптическая сила системы линз (диоптрия)
Dw=1/(R1*R2)^0,5+1/L
\\Оптическая сила рассеивающей линзы (диоптрия)
Dw-Ds

Это пример расчёта рассеивающей очковой линзы или отрицательного мениска. Красным цветом выделены результаты измерений и полученный результат в диоптриях.

Как измерить межцентровое расстояние или расстояние между зрачками?

Проще всего измерить расстояние между зрачками с помощью линейки и помощника. Помощник прикладывает линейку к вашим глазам и, глядя с расстояния 33см одним глазом, определяет расстояние между центрами зрачков. При плохих условиях освещения, можно ориентироваться по краю радужной оболочки. Вы в это время смотрите либо вдаль, либо на переносицу помощника, в зависимости от того, для каких целей заказываются очки. К полученному результату нужно прибавить 4мм (если речь идёт о взрослом человеке) и округлить до ближайшего целого числа, кратного двум. Это и будет расстоянием между оптическим осями линз, которое мы вносим в рецепт. Обычно разница в межцентровом расстоянии для чтения и для дали составляет 2мм.

Это не самый корректный метод замера, но когда дело касается неподготовленного помощника, другие методы обычно дают ещё более худшие результаты.

Если помощника нет, то эту операцию можно проделать с помощью смартфона. Приложив к глазам линейку, делаем снимок с расстояния 33см.

Внимание! Для более точного расчёта этого параметра, используйте формулу из следующего параграфа.

Как измерить расстояние между оптическими осями очковых линз?

Для измерения расстояния между оптическими осями собирающих очковых линз, закрепляем линейку на мишени. Очки располагаем параллельно мишени и фокусируем точеный источник света на мишени сразу обеими линзами.

Измеряем расстояние между светящимися точками и расстояние между мишенью и оправой очков.

Расчёт межцентрового расстояния выполняем по формуле, компенсирующей параллакс:

X=C*(L-S)/L

C – расстояние между световыми точками в метрах

L – расстояние от точечного источника света до мишени в метрах

S – расстояние от мишени до оправы очков в метрах

X – расстояние между оптическими осями линз в метрах

Для упрощения измерений, скопируйте следующий текст в окно программы «Калькулятор-блокнот» и внесите туда же значения переменных L, S и С. Затем нажмите на Enter.

\\От мишени до светодиода
L=
\\От мишени до оправы очков
S=
\\Между светящимися точками
C=
\\Межцентровое расстояние
X=C*(L-S)/L

Это пример расчёта расстояния между оптическими осями линз.

Мелкие подробности

В случае появления дискомфорта при использовании очков, можно проверить правильность установки линз

Если при одновременной фокусировке обеих линз, оправа окажется расположенной непараллельно мишени, значит в очки были установлены линзы с разной оптической силой. Также следует проверить расстояние между оптическим осями линз. Оно не должно отличаться от записанного в рецепте более чем на 1мм.

Как в домашних условиях измерить расстояние между оптическими осями рассеивающих линз, я не знаю.

Производя замеры межцентрового расстояния для бифокальных очков, можно заметить, что расстояния между оптическим осями основных и дополнительных линз будет отличаться на 2мм. Причём, для бифокальных сегментных линз (БСС), это расстояние заложено в саму конструкцию линзы, поэтому его легко проконтролировать на глазок, по параллельности расположения хорд малых линз.

А вот обычные бифокальные линзы (БС) могут быть установлены с недопустимой погрешностью и в случае дискомфорта, нужно проверить оба межцентровых расстояния.

Стоит также упомянуть тот факт, что чем больше оптическая сила очковых линз, тем точнее следует контролировать межцентровое расстояние.

Как правило, сферические фабричные очковые линзы выпускаются с дискретными значениями оптической силы, кратными 1/4 диоптрии.

Однако результаты вычислений могут отличаться от дискретных значений немного больше, чем можно было бы ожидать. Это может быть связано недостаточной точностью измерения и фокусировки линзы.

Для повышения точности измерений, можно увеличить число замеров, соответственно увеличив и степень извлекаемого корня.

Шаблон для измерения рассеивающей линзы для калькулятора методом четрырёх измерений:

\\От мишени до светодиода (метр)
L=
\\От мишени до собирающей линзой (метр)
S1=
S2=
S3=
S4=
\\От мишени до системы линз (метр)
R1=
R2=
R3=
R4=
\\Оптическая сила собирающей линзы (диоптрия)
Ds=1/(S1*S2*S3*S4)^0,25+1/L
\\Оптическая сила системы линз (диоптрия)
Dw=1/(R1*R2*R3*R4)^0,25+1/L
\\Оптическая сила рассеивающей линзы (диоптрия)
Dw-Ds

Дополнительные материалы

Близкие темы


Как переснять любой документ при помощи ЦФК?

Сканирование негативов и слайдов с использованием ЦФК

Как определить положение Нодальной точки

Комментарии (16)

Страниц: « 1 [2] Показать все

Всем привет! Я электрик, знаний в области линз почти нулевые, мне нужна определённая линза, выпуклая с одной стороны, куда не обращаюсь просят её данные, размер, градус и т.д. Она у меня в размерах есть, а вот с градусом буксую, кто может помочь?

Павел, вам нужно к оптикам обратиться в какой-нибудь астрономический форум. Я решал для себя конкретную прикладную задачу (нужно было заказать очки). Для этого и заглянул в учебник.

АСТРОНОМИЧЕСКИЙ. ТОЛЬКО ДЛЯ ТОГО, ЧТО БЫ ПРАВИЛЬНО ИСКАТЬ ГРАДУС ВЫПУКЛОСТИ ЛИНЗЫ!! НО В ОПТИКУ Я ЗАЙДУ, ХОТЬ ТАМ БОЛЬШЕ ПРОДАВЦЫ, НЕЖЕЛИ СПЕЦИАЛИСТЫ.

нА РУССКОМ ЯЗЫКЕ ТУТ С УЧЕБНИКОМ ПРОБЛЕМА, Я ДАЖЕ В НЕТЕ ЭЛЕМЕНТАРНОГО НИЧЕГО НЕ СМОГ НАЙТИ, ЕСТЬ КОНЕЧНО, НО ВСЁ ТАКОЕ НАВОРОЧЕННОЕ И СЛОЖНОЕ, А У МЕНЯ ДУМАЮ ПРОСТОЕ ГЕОМЕТРИЧЕСКОЕ РЕШЕНИЕ ВОПРОСА. ТОЛЬКО ЗНАТЬ, ОТКУДА НОГИ РАСТУТ.)))

В вашем ролике в калькулятор вбито расстояние от мишени до светодиода аж L=9,5 метров. 1.поменьше нельзя? 10 метров, где взять такое помещение. 2. чем обусловлен выбор такого расстояния.?

US, кто вам мешает вбить туда своё расстояние… Просто чем больше это расстояние и чем меньше диаметр источника света, тем точнее результат. У меня квартира на самом деле небольшая, просто я использовал максимально возможное расстояние, которое поглотило коридор и две комнаты. То есть просто конфигурация квартиры помогла.

Страниц: « 1 [2] Показать все

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector