Как измерить радиус сгиба

Содержание
  1. Варианты расчетов радиуса изгиба труб
  2. Расчет радиуса гибки трубы с помощью линейки
  3. Таблица 1. Использование линейки 30 см
  4. Таблица 2. Использование линейки 50 см
  5. Вычисления внутреннего и внешнего угла изгиба трубы с учетом значений пружинения
  6. Простая формула для определения радиуса дуги
  7. Радиус гибки листового металла
  8. Зачем гнут листовой металл по радиусу
  9. Технология гибки листового металла: особенности и классификация
  10. Этапы и последовательность действий
  11. Расчет минимального радиуса при гибке листового металла
  12. Минимальный радиус гибки листового металла: таблицы
  13. Как измерить радиус изгиба
  14. Гибочный калькулятор
  15. Введите значения H и h в миллиметрах
  16. Параметры сегмента по хорде и высоте
  17. Требования стандартов к радиусу изгиба
  18. Методы сгибания труб и их преимущества
  19. Горячая гибка
  20. Холодные методы сгибания круглых труб
  21. Методы сгибания квадратного металлопрофиля
  22. Радиус гиба трубы – приспособления для получения в быту и промышленности
  23. Ручные трубогибы
  24. Электромеханические трубогибы
  25. Применение гидравлики – преимущества
  26. Методы гибки труб без заводских приспособлений
  27. Стальные трубы
  28. Медные трубы
  29. Металлопластиковые трубы
  30. Пластиковые трубы

Варианты расчетов радиуса изгиба труб

Гибка трубопровода на специализированных станках — технологический процесс изменения направленности трубы в пространстве под углом. Во время данной процедуры во внутренней точке гиба появляется сжимающее напряжение, а во внешней части — растягивающее напряжение. Чтобы определить правильный радиус сгибания трубы с учетом всех параметров, при котором исключается появление различных деформаций, используют специальные расчеты.

Расчет радиуса гибки трубы с помощью линейки

Для проведения расчетов необходимо взять две жесткие линейки длиною 30 и 50 см. Первоначально измеряется радиус гиба уже изогнутой трубы, который нужно повторить на заготовке. Линейку нужно приложить к исходной трубе и замерить расстояние между линейкой и серединой трубы (рис. 1).

Рис. 1 Измерение ширины в исходной трубе.

Рис. 2. Радиус гибки трубы.

Используя полученные данные замеров линеек, необходимо подобрать подходящие параметры радиуса и диаметра дуги из таблиц 1 и 2.

  • А – интервал (ширина) трубы, мм
  • D – диаметр дуги, мм
  • R — радиус гибки, мм

Таблица 1. Использование линейки 30 см

Интервал 5 7,5 10 12,5 15 17,5 20 25
Диаметр 4505 3008 2260 1813 1515 1303 1145 925
Радиус 2253 1504 1130 907 758 652 573 463
Интервал 30 40 50 60 70 90 100
Диаметр 780 603 500 435 391 340 325
Радиус 390 302 250 218 196 170 163

Таблица 2. Использование линейки 50 см

Интервал 5 7,5 10 12,5 15 17,5 20 25 30 40 50
Диаметр 12500 8341 6260 5013 4182 3589 3145 2525 2113 1603 1300
Радиус 6250 4172 3130 2507 2091 1795 1573 1263 1057 802 650
Интервал 60 70 80 90 100 110 130 160 200
Диаметр 1102 963 861 785 725 678 611 550 513
радиус 551 482 432 393 363 339 306 275 257

Вычисления внутреннего и внешнего угла изгиба трубы с учетом значений пружинения

Радиус изгиба трубной заготовки рассчитывается так:

∆λ – значение угла пружинения

Расчеты параметра ∆λ:

Ro (мм) – осевой радиус изгиба

n и m – компоненты исчисляются так:

S – толщина стенки детали, мм

Rн – внешний радиус изгиба заготовки, мм

Rо – средний осевой радиус изгиба трубы, мм

Rв – внутренний радиус изгиба трубы, мм

П – модуль упрочнения материала трубы, кг/мм²

Е – модуль упругости материала трубы, кг/мм²

σо – экстрополированный предел текучести материала трубы, кг/мм²

Внешний и внутренний радиусы изгиба заготовки исчисляется следующим образом:

dн – значение внешнего сечения заготовки (мм)

Источник

Простая формула для определения радиуса дуги

Полезно знать математический способ, позволяющий рассчитать радиус дуги. Он особенно удобен, когда требуется точно разметить плавную дугу с помощью большого импровизированного циркуля, а не гибкого лекала, после того как вам стали известны три опорные точки или два главных размера.

Как видно на рисунке справа, требуется знать лишь высоту и длину дуги. Подставьте эти размеры в простую формулу и вычислите радиус. Получив результат, настройте циркуль на этот размер и начертите идеальную дугу требуемого радиуса.

Например, если нужно построить дугу длиной 240 и высотой 30 мм, следует действовать так:

Сначала подставьте эти размеры в формулу. В нашем случае L=120, Н=30, поэтому (1202+302): (2×30) = (14400+900): 60= 153000:60 = 255.

Теперь сделайте для этого радиуса циркуль, как показано на фото внизу. Выровняйте один конец с серединой дуги на заготовке. Проведите из этой точки под прямым углом по линейке прямую линию и поставьте на нее второй конец циркуля. Теперь вы можете начертить идеальную дугу, которая соединит все три опорные точки.

Простая формула для определения радиуса дуги , 2.8 out of 5 based on 19 ratings

Источник

Радиус гибки листового металла

Вопросы, рассмотренные в материале:

  • Зачем гнут листовой металл по радиусу
  • Какова технология гибки листового металла: особенности и классификация
  • Этапы и последовательность действий
  • Расчет минимального радиуса при гибке листового металла
  • Минимальный радиус гибки листового металла
  • Преимущества использования станков с ЧПУ

Знать допустимые радиусы гибки листового металла нужно всем, кто собирается использовать именно этот способ обработки материала. Потому что без точных значений и грамотного расчета можно испортить любые заготовки.

В данной статье расскажем о технологии гибки листового металла , особенностях данного типа обработки, способах и применяемых методах. Особое внимание будет уделено минимальному радиусу гибки металлического листа и методологии расчета.

Зачем гнут листовой металл по радиусу

Для придания заготовке необходимой формы, учитывающей ее рельефную модификацию (в т. ч. углы и скругления) принято использовать радиусную гибку листового металла . Это упорядоченный процесс, поэтому, когда требуется использование сразу нескольких гибов, каждый элемент обрабатывается последовательно до тех пор, пока не будет достигнута нужная конфигурация.

Такая технология применяется для придания формы:

  • листовым профилям;
  • уличным карнизам и козырькам;
  • подвесным элементам фасада зданий;
  • металлическим комплектующим мебели;
  • декоративным элементам интерьера и т. д.

Сферические, цилиндрические и конусовидные детали, выполненные из гнутого листового металла или металлопрофиля, пользуются большим спросом в котельном производстве.

Гибка по радиусу может потребоваться в бытовых строительных и ремонтных работах, например, при проведении труб. Не стоит пытаться проделать такую операцию в домашних условиях – для этого нужен специальный станок. Благодаря современным технологиям можно подобрать оптимальные параметры работы с заготовками разного состава листового металла, толщины и формы. Радиус изгиба получается точным и качественным, а материал при этом не теряет свои прочностные характеристики.

Рекомендовано к прочтению

Разумеется, существуют и другие способы придания листам нужной конфигурации радиуса: сварка, клепка или резка. Но гибка имеет перед ними целый ряд преимуществ:

  • отсутствие швов и стыковки, что гарантирует естественную прочность металла;
  • стойкость к окислению, коррозии и др. благодаря целостной структуре листовой заготовки;
  • экономичность и отсутствие производственных отходов;
  • сохранение эстетичности исходника.

Существует несколько видов радиусной гибки листового металла, которые подбираются индивидуально в каждом случае (в зависимости от технических характеристик исходника и особенностей желаемого результата). Остановимся подробней на каждом из них.

Технология гибки листового металла: особенности и классификация

Технология гибки, в зависимости от требуемой модификации листового металла, включает в себя следующие виды:

  • Одноугловая (V-образная) – считается наиболее простой. Под воздействием силы гиба верхняя поверхность заготовки сжимается, а нижняя – прилегает к стенкам механизма и растягивается. Таким образом достигается нужный радиус.
  • Двухугловая (П-образная) – выполняется схожим образом за исключением количества этапов обработки.
  • Многоугловая гибка.
  • Радиусная гибка листового металла (закатка) – позволяет получить плавный изгиб. Применяется для создания петель, хомутов и т. д.

Такая технология обработки заготовок не требует колоссального усилия, поэтому предварительного нагрева материала не требуется.

Горячая гибка по радиусу применяется лишь для толстых листовых заготовок (12–16 мм), а также малопластичных металлов. К последним относятся дюралюминий, высокоуглеродистые стали и их сплавы.

Такой способ обработки листового материала часто применяют в комплексе с другими операциями, например, резкой, вырубкой или пробивкой. В результате получаются сложные объемные изделия из металла. Для их изготовления прибегают к штампам, которые можно использовать в нескольких переходах.

С точки зрения пространственного позиционирования существует два способа гибки по радиусу:

  • Продольная – при этом используется холодная технология работ, что не позволяет обрабатывать толстые листовые заготовки.
  • Поперечная – включает в себя несколько этапов: в первую очередь загибаются кромки металлической детали, затем она нагревается. После начинаются непосредственно производственные операции: гибка, осаживание и вытяжка.

Для радиусной гибки листового металла требуется специализированный ручной или промышленный станок. Его конструкция модифицируется в зависимости от требуемой формы изделия.

Работа в холодной технике требует соблюдения оптимального соотношения радиуса изгиба, толщины металла и размера самого листа. Отступление от предельного значения чревато потерей прочностных характеристик заготовки, возможностью появления повреждений.

Придание радиусной формы заготовке под воздействием высоких температур способно изменить структуру материала. Так, во время охлаждения после нагрева связи между молекулами в листе металла становятся более тесными и упорядоченными, что способствует увеличению его твердости, прочности и упругости. Кроме того, в этот момент сокращается удлинение при разрыве. Пластичность материала изменяется мало.

Не рекомендовано активное тепловое воздействие на металл. Если температура близка к температуре плавления листового материала, то его физические свойства резко ухудшаются – получается пережог. Он сопровождается окислением и обезуглероживанием поверхности. Длительный перегрев является причиной образования крупнозернистой структуры материала.

Со стороны процесс гибки металлического профиля по радиусу кажется простым, но это не значит, что он оказывает несущественное воздействие на структуру материала. Во время воздействия в ней возникает напряжение. Сначала оно упругое, а затем приобретает пластический характер. Важно определить баланс этих напряжений и изменений, часто это бывает сложно.

Во время гибки листа по радиусу деформация происходит неравномерно. Так, она более заметна в самих углах и практически неощутима у края пластины. Особенностью работы с тонкими металлическими листами является то, что их верхняя часть под воздействием гиба сжимается, а нижняя – растягивается.

Пространство между ними принято называть нейтральным слоем. Точное определение этого промежутка является одним из необходимых условий выполнения качественного изгиба радиуса.

Для квалифицированной закатки важно знать некоторые особенности процедуры:

  • В структуре металлической пластины находятся направленные волокна. Чтобы во время ее обработки не нарушилась целостность материала, лист необходимо расположить поперек волокон или под углом 45° к ним.
  • Для каждого листового металла необходимо предварительно определить предел текучести. Его нарушение чревато разрывами.
  • В месте воздействия гиба происходит ряд деформаций пластины: нейтральный слой, находящийся в середине листа или в центре его тяжести, смещается в сторону меньшего радиуса; происходит изменение в поперечном сечении; уменьшается толщина материала.

Работа с мелкогабаритными заготовками требует большого мастерства. Важно учитывать, что:

  • чем меньше радиус гибки листового металла, тем больше площадь его деформации;
  • при большом радиусе изменения затрагивают не всю пластину.

Особенности выполнения работы такого типа важно учитывать при организации процесса штамповки заготовок.

Этапы и последовательность действий

Закатка происходит в несколько упорядоченных этапов и включает следующее:

  1. Анализ требуемой конфигурации изделия.
  2. Расчет усилия гиба и технология выполнения работ.
  3. Подбор наконечника гиба, настройка оборудования.
  4. Разработка схемы исходника.
  5. Расчет переходов гибки.
  6. Проектирование оснастки технологического процесса.

Соотношение характеристик исходной листовой заготовки и желаемого изделия необходимо для анализа реалистичности штамповки по радиусу в соответствии с приведенным чертежом.

Перед тем как приступить к приданию заготовке требуемой формы, важно определить ее угол пружинения, минимальный угол и радиус гибки.

Расчет минимального радиуса при гибке листового металла

Диаметр окружности нейтрального слоя (D0), который расположен в центре металлического листа длиной L и толщиной S в случае гибки его в барабан, рассчитывается по следующей формуле:

Если толщина стенок металлического барабана равна S, то внутренний диаметр изделия (D) вычисляется таким образом:

Формула вычисления внешнего диаметра (D1) следующая:

Таким образом, разность длины окружности может быть вычислена по формуле:

Следовательно, отношение 2πS/πD должно быть не более 0,05.

На основании того, что 2πS/πD ≤ 0,05 получается, что D ≥ 2S/0,05 = 40S, т. е. для сохранения прочностных качеств листа минимальный внутренний диаметр его гибки должен превышать его толщину в 40 раз, а радиус – в 20 раз. Например, из пластины толщиной 10 мм можно изготовить цилиндр с минимальным внутренним диаметром 40 мм.

Минимальный радиус гибки листового металла: таблицы

Мы уже не раз упоминали о важности определения минимально допустимого радиуса для того или иного листового материала до начала гибки. Особое значение это имеет при работе в холодной технике. Игнорирование этих параметров способно привести к порче заготовки.

В таблице 1 приведены минимально допустимые показатели радиуса гибки листового металла по ГОСТу (R) в зависимости от толщины пластины (S) и ее состава.

Длина участка, подвергнутого гибке на угол α, вычисляется следующим образом:

  • A – длина линии гибки листовой пластины;
  • R –радиус внутренней поверхности гиба металла;
  • К – коэффициент положения нейтрального слоя при гибе;
  • S – толщина металлического листа, мм.

Важно знать, что минимальный радиус гибки листового металла (в т. ч. из стали) при работе в холодной технике устанавливается в соответствии с показателем деформации крайних волокон. Его используют только в случае острой производственной необходимости. В стандартных ситуациях этот параметр устанавливают выше минимального.

Коэффициент положения нейтрального слоя при гибке металла (мм):

Источник

Как измерить радиус изгиба

Гибочный калькулятор

Чаще всего стоит задача определения параметров дуги по её габаритным размерам. Для этого мы предлагаем гибочный калькулятор.

Введите значения H и h в миллиметрах

хорда H = мм высота хорды h = мм радиус R = 0 мм длина дуги L = 0 мм угол сегмента φ = 0 градусов Очистить Вычислить Сохранить расчёт

Не забывайте, что для гибки профилей необходим технологический припуск от 500 до 1000 мм. на заготовку.

Вы можете скачать ПК версию гибочного калькулятора по этой ссылке.

140030, МО, Люберецкий район, пос. Малаховка, Касимовское шоссе, д. 3Г

Право собственности ООО «ПК РАДИУС» © 2002–2017. Все права защищены.

Калькулятор рассчитывает глубину прогиба профиля трубогибом или гибочным станком для получения заданных параметров.

Статья написана в ответ на запрос пользователя, который хотел вычислять глубину прогиба профиля ведущим валом, для получения изогнутой трубы с заданными параметрами.
До запроса я даже и не знал, что есть специальные машины для холодной гибки труб. Причем бывают как и промышленные гибочные станки, так и ручные гидравлические трубогибы.

Все они действуют по одному принципу, который можно понять, посмотрев на картинку.

Профиль (труба) укладывается между валиками, затем центральный валик с усилием прогибает профиль, и дальше оставшийся кусок прокатывается через станок.

С моей дилетантской точки зрения, процесс выглядит примерно так

Или, если совместить:

Собственно, интересует вопрос — насколько надо прогнуть трубу, то есть опустить ведущий вал, чтобы после прокатки всего отрезка профиля получить заданный изгиб?
Изгиб трубы, очевидно, задается радиусом. Но, как показал запрос пользователя, параметры могут быть заданы не только радиусом, но и длиной и высотой хорды, если надо получить арку. Здесь нам пригодится калькулятор, который по заданной длине (C) и высоте хорды (h) рассчитывает длину требуемого отрезка (L) и радиус окружности (R) — смотри рисунок.

Параметры сегмента по хорде и высоте

Подробности и формулы смотри здесь — Сегмент круга

Идем дальше.
Итак, нам нужно получить глубину прогиба зная радиус, расстояние между ведомыми валиками, радиус валиков и размеры профиля.
Перерисуем совмещенный рисунок, добавив несколько нужных линий, и убрав все ненужные.

Точка B — центр нашей окружности. Обратите внимание, что расчет идет по внешнему по отношению к изгибу краю профиля. Поскольку радиус по высоте и ширине хорды скорее всего будет рассчитываться по оси профиля, к полученному радиусу надо прибавить радиус профиля так, чтобы получить радиус внешнего края профиля.

Дальше в ход идет геометрия.
Из расстояния AC и расстояния AB находим угол ABD.

При монтаже трубопроводов из различного вида материалов его изгиб позволяет уменьшить количество разборных или сварных соединений, понижающих надежность магистрали. При проведении трубогибочных работ полезно знать допустимый радиус гиба трубы, обеспечивающий безопасность и надежную эксплуатацию трубопроводной системы в соответствии с технической документацией.

Чаще всего изгибаемые трубы выполнены из стали и коррозионно-стойких металлов: нержавейки, меди, алюминия, латуни, при устройстве бытовых систем отопления и водопроводов изгибают изделия из пластика и металлопластика. Методы сгибания труб по радиусу различны в зависимости от материала их изготовления и могут быть выполнены ручным или электромеханическим способом на специальных станках.

Рис. 1 Углы гиба медных труб и изделий из латуни

Требования стандартов к радиусу изгиба

При сгибе трубных элементов их стенки не должны изменять свой профиль, сечение и пропускную способность (изменение внутреннего диаметра) – это достигается за счет определенного радиуса разворота, который установлен стандартами.

При определении минимальных пределов закругления учитывают способы его получения – наилучшие показатели в сторону уменьшения обеспечивают дорновые трубогибы с технологией наматывания и температурная обработка, позволяющая уменьшить размеры окружности.

Показатель также зависит от материала изготовления и размеров изделия: наружного диаметра (Dn) и толщины стенок (S), в таблицах также приводится длина прямого участка, которая необходима для получения указанных значений.

При работах важно знать размеры ырагмента, на котором получены данные значения радиуса – они исчисляются суммированием длин двух прямых участков и дуги, рассчитываемой по специальной формуле.

Рис. 2 Минимальный радиус гиба трубы стальных трубопроводов и расчет длины дуги

Данные, приведенные в таблицах, гарантируют при соблюдении размерных параметров требуемую ГОСТ эллипсность и овальность до 12,5%.

Согласно ГОСТ 17365-71В на трубопроводы для агрессивных сред, указан следующий минимальный радиус гиба труб:

  • для элементов с наружным диаметром D до 20 мм. – не менее 2,5 D;
  • при D, больше 20 мм. радиус не должен быть меньше 3,5 D.

При этом утоньшение стенок в зоне гиба не должно превышать 20% для стали и 25% для алюминия.

Методы сгибания труб и их преимущества

Сгибание труб является технологией, где нужный поворот в направлении трубопроводной линии создается путем физического воздействия на заготовку, метод имеет следующие преимущества:

  • Уменьшенная металлоемкость, в магистрали отсутствуют переходные фланцы, муфты и патрубки.
  • Пониженные трудозатраты при монтаже трубопроводов по сравнению со сварными соединениями.
  • Низкие гидравлические потери из-за неизменного профильного сечения.

Рис. 3 Дорны для трубогибов

  • Неизменная структура металла, его физические и химические параметры по сравнению со сваркой.
  • Высокое качество герметизации, линия имеет однородную структуру без разрывов и стыков.
  • Эстетичный внешний вид магистрали

Существуют две основных технологии гибки – горячая и холодная, приспособления и методы можно разбить на следующие категории:

  1. По типу физического воздействия трубогибный агрегат может быть ручной и электрический с механическим или гидравлическим приводом.
  2. По технологии сгибания – дорновые (гиб при помощи специальных внутренних протекторов), бездорновые, и вальцовочные установки с роликами.
  3. По профилю – установки для металлопропрофильных прямоугольных или круглых изделий.

Рис. 4 Горячие способы гибки труб

Горячая гибка

Популярная в быту технология применяется в случаях, когда отсутствует трубогибный аппарат или нет возможности произвести работы холодным способом, процесс состоит из нескольких операций:

  1. Заготовка заполняется речным мелкозернистым сеяным песком без посторонних вкраплений в сухом виде. Для этого с одного конца вставляют заглушку, засыпают песок и закрывают отверстие с другой стороны.
  2. Место изгибания нагревается до температуры не более 900 градусов во избежание пережога и производится постепенное плавное механическое наматывание детали вокруг округлого шаблона.
  3. По окончании процесса заглушки извлекаются и из заготовки высыпается песок.

Холодные методы сгибания круглых труб

Холодные способы имеют неоспоримые преимущества перед горячими технологиями: они не нарушают структуру металла, более производительны и требуют меньше затрат. При холодном сгибе возникают следующие дефекты:

  1. уменьшение сечения трубы с внешней стороны профиля;
  2. искривления в загибе в виде гофры с внутренней стороны;
  3. изменение профильной формы в местах изгиба труб с круглой на овальную.

Рис. 5 Сгибание заготовок из металлопрофиля в быту

Чаще всего подобные дефекты возникают при деформации тонкостенных труб, поэтому при операциях с ними используется внутренний протектор – дорн, вставляемый во внутреннюю полость.

Дорн представляет собой устройство, состоящее из жесткого стержня с подвижными сегментами на краю шарообразной или полусферической формы. Перед работой устройство помещается во внутреннюю полость заготовки таким образом, чтобы его подвижные элементы располагались в точке гиба, по окончании процедуры дорн извлекают из готового элемента и процесс повторяют.

Методы сгибания квадратного металлопрофиля

Изгибание профиля квадратного или прямоугольного сечения хотя и применяется в промышленности, гнутый металлопрофиль более востребован в быту. При сооружении перекрытий теплиц требуется арочный профиль, который можно сделать с использованием несложного устройства. Принцип действия этого приспособления заключается в прокатке профильной заготовки через систему из трех вращающихся валков, два крайних из которых являются неподвижными, а третий перемещается в продольном направлении, задавая угол изгиба.

Если необходимо получить в прямоугольном профиле меньший радиус закругления, используют термический нагрев металлопрофиля паяльной лампой или газовой горелкой с одновременным физическим воздействием.

Рис. 6 Рычажные гибы в ручных приспособлениях

Радиус гиба трубы – приспособления для получения в быту и промышленности

На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.

Ручные трубогибы

Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.

Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием – в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.

Рис. 7 Арбалетные приспособления ручного типа

Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.

Гибочный башмак установлен на штоке, который может перемещаться с помощью винтовой передачи, гидравлического давления жидкости при ручном нагнетании или посредством гидравлики с электроприводом. Подобные устройства позволяют производить изгибание труб из мягких материалов диаметром до 100 мм.

Трехроликовые агрегаты (трубогибочные вальцы). Являются самым распространенным типом трубогибочных агрегатов в быту и промышленности, работают по принципу холодной вальцовки. Конструктивно выполнены в виде двух роликов, в ручьи которых устанавливается заготовка, третий ролик постепенно подводят к поверхности, одновременно прокатывая изделие в разные стороны. В результате происходит деформация заготовки без складкообразования большего сечения, чем в других ручных трубогибах.

Отличительной особенностью агрегата является невозможность получения малого радиуса закругления (обычное значение 3 – 4 величины внутреннего диаметра).

Все перечисленные устройства являются бездорновыми агрегатами, поэтому неэффективны при гибке тонкостенных изделий, также их нежелательно использовать при работе с заготовками со сварным стыком стенок – при пластический деформации возможно раскрытие отдельных участков шва.

Рис. 8 Трубогибочные вальцы

Электромеханические трубогибы

Электромеханические агрегаты в основном используются в промышленности и обеспечивают выполнение следующих технологических процессов.

Бездорновая гибка. Станки применяются при работе с заготовками, для радиусов гиба 3 – 4 D., способны изгибать толстостенные трубы для мебельной и строительной отрасли, магистральных трубопроводов. Станки имеют самую простую конструкцию и управление по сравнению с другими видами, отличаются малыми габаритными размерами и весом.

Бустерная обработка. Агрегаты, работающие по специальной технологии продвижения каретки с деталью дополнительным узлом, разработаны для получения сложных гибов без утоньшения стенок. Применяются для изготовления змеевиков различной формы в тепловой энергетике, котельной и водонагревательной индустрии.

Дорновая гибка. Агрегаты данного типа позволяют производить высококачественное изгибание тонкостенных элементов с наружным диаметром до 120 мм. Промышленные станки могут иметь автоматическое или полуавтоматическое исполнение с числовым программным управлением.

Трехвалковая гибка. Конструкция широко используется для изгибания любых металлов и сплавов, отличается универсальностью: отлично справляется с профилем круглого или прямоугольного сечения, уголками и плоскими пластинами. Многофункциональность агрегата достигается за счет смены валков с различным видом рабочих поверхностей и размеров.

При помощи данного агрегата удобно гнуть элементы большой длины с одинаковым большим радиусом закругления на всем протяжении.

Рис. 9 Промышленные трубогибы

Применение гидравлики – преимущества

Во многих ручных и практически во всех промышленных трубогибочных агрегатах используется гидравлический привод, имеющий следующие преимущества перед винтовым механическим:

  • бесступенчатая подача привода к сгибаемому изделию;
  • возможность развивать большие статические усилия при возвратно-поступательном движении, недостижимые при использовании только одних электроприводов;
  • малые габариты основных узлов;
  • высокое быстродействие;
  • надежность и долговечность;
  • отсутствие трущихся узлов и хорошая смазываемость.

Рис. 10 Способ гибки стальной металлической заготовки

Методы гибки труб без заводских приспособлений

В бытовых условиях нередко возникает необходимость в изгибании трубных заготовок при проведении строительных работ или монтаже газовых трубопроводов. При этом экономически нецелесообразно тратить финансовые средства на приобретение заводских трубогибов для разовых операций, многие применяют для этих целей простые самодельные приспособления.

Стальные трубы

Сталь относится к довольно жестким и прочным материалам, с большим трудом поддающимся деформации, основным методом изменения ее конфигурации является сгиб в нагретом состоянии с наполнителем при одновременном физическом воздействии. Для труб из тонкостенной нержавейки для получения длинного участка с небольшим радиусом изгиба применяют следующую технологию:

  1. Устанавливают заготовку вертикально, закрывают ее с одного конца пробкой и внутрь засыпают очень мелкий сухой песок, после полного заполнения вставляют пробку с другой стороны.
  2. Находят трубу или низкий вертикальный столб нужного диаметра и жестко закрепляют трубный конец на его поверхности.
  3. Оборачивают деталь вокруг трубной оси, поворачивая шаблон или обходя его вокруг.
  4. После навивки освобождают конец и извлекают изогнутую деталь из шаблона, снимают пробки и высыпают песок.

Рис. 11 Как получают нужный радиус изгиба медной трубы

Медные трубы

Медь относится к более мягким материалам, чем сталь, ее также удобно гнуть при нагревании или с помощью засыпанного внутрь песка. Можно также использовать для изгибания бытовой заменитель дорна – стальную пружину с плотными толстыми витками и сечением чуть меньше обрабатываемой детали. При проведении работ элемент вставляется внутрь и находится в точке, где производится деформация, а после проведения необходимых операций легко извлекается наружу. Но намного проще изгибать медные трубы специальным пружинным трубогибом (данные изделия можно приобрести в торговой сети), которые эффективны на коротких трассах и работают за счет равномерного распределения прилагаемого усилия на поверхность. Пружинное устройство работает следующим образом:

  1. Пружина одевается поверх трубы в нужное место, после чего ее вручную изгибают вместе с трубой.
  2. При дальнейшем изгибании пружину перемещают и производят загиб в другой точке.
  3. По завершении операции пружинный сегмент легко извлекается наружу без применения подсобных средств.

Другой популярный материал – алюминий, проще изгибать с нагреванием горелкой.

Рис. 12 Как гнут трубы без станка из алюминия

Металлопластиковые трубы

Да изгибания металлопластиковых труб в бытовом хозяйстве используется внутренняя или наружная пружина (кондуктор). Технология проведения работ аналогична операциям с медной трубой, при сгибке следует соблюдать допустимые ограничения по радиусу во избежание повреждения изделия.

Пластиковые трубы

Основным элементом для изменения конфигурации пластиковых труб является строительный или бытовой фен, для облегчения работ можно использовать песок. Изделия сложной формы гнут следующим образом:

  • На деревянную плиту с помощью шуруповерта вкручивают саморезы по нужной конфигурации заготовки.
  • Вставляют трубный конец между двумя шурупами и производят нагрев стенки трубы феном, обеспечивая направление изделия с поворотами и гибкой по заданному маршруту.
  • По окончании работ выкручивают саморезы и извлекают заготовку.

Рис. 13 Способы гибки труб из металлопластика наружным и внутренним кондуктором

Можно воспользоваться еще одной простой технологией:

  • Насыпают в пластиковую трубу песок и плотно закрывают ее концы.
  • Помещают изделие на некоторое время в кипящую воду и затем извлекают на поверхность.
  • Придают заготовке нужную форму, фиксируя ее в нужном положении и дожидаясь охлаждения.

Рис. 14 Как сгибают пластиковые элементы

Существующие промышленные и бытовые методы получения необходимого радиуса изгиба позволяет проводить данные операции с любыми материалами различных диаметров. Для проведения работ применяют специальные приспособления ручного или электромеханического принципа действия, в которых часто используются гидравлические узлы. В бытовом хозяйстве эффективными методами гибки является применение специальных пружин и нагрев изделий газовыми горелками или бытовым феном (при изгибании пластика).

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector