Меню

Как измерить ускорение акселерометром



Практическое руководство по акселерометрам

Краткий обзор

Это руководство объяснит: что такое акселерометр, что он измеряет, отличия между видами акселерометров, применение акселерометров и различия в регистраторах ускорения.

Акселерометр

Акселерометр — чувствительный элемент, который измеряет ускорение; ускорение – норма изменения скорости относительно времени. Ускорение – вектор, который имеет величину и направление. Единица измерения акселерометра g – ускорение свободного падения, которое равно 9.81 . Акселерометр развивался из простой водяной трубы с шариками воздуха внутри, которые показывали направление ускорения через интегральную микросхему, которая была размещена на монтажной плате. Акселерометр может фиксировать: вибрации, рывки, наклонное положение, столкновения и движение объекта.

Виды акселерометров

Существует несколько видов акселерометров. Их различают по чувствительным элементам и принципу действия.
Емкостной акселерометр aфиксирует изменения в электрической емкости относительно ускорения. Акселерометр ощущает изменение емкости между статическим и динамическим состояниями.
Пьезоэлектрический акселерометр использует в своем составе такие материалы как кристаллы, которые вызывают появление электрического потенциала в зависимости от прикладываемого к ним давления. Это явление известно как пьезоэлектрический эффект. Приложенное давление, как и ускорение, создает электрическую нагрузку.
Пьезорезистивный акселерометр (тензометрический акселерометр) замеряет электрическое сопротивление материала при приложенном механическом давлении.
Акселерометр с эффектом Холла Акселерометр с эффектом Холла измеряет изменение напряжения, происходящее от изменений в магнитном поле вокруг акселерометра.
Магниторезистивный акселерометр работает, фиксируя изменения сопротивления в магнитном поле. Структура и функция подобна акселерометру с эффектом Холла за исключением того, что вместо измерения напряжения, магниторезистивный акселерометр измеряет сопротивление.
Акселерометр теплопередачи измеряет внутренние изменения в теплопередаче, зависящие от ускорения. Единственный источник тепла располагается в. Терморезисторы расположены на одинаковом расстоянии относительно подвешенного источника тепла по всем четырем сторонам. При отсутствии ускорения градиент тепла будет симметричным. Ускорение в любом направлении заставляет градиент тепла стать несимметричным благодаря тепловой передаче.

Акселерометры основанные на МЕМС технологиях

Технология МЕМС (Микро Электромеханические Системы) основана на ряде инструментов и методологий, которые используются, для создания маленьких объектов, размеры которых измеряются в масштабе микрометров (один миллионный от метра). Эти технология сейчас используется для производства МЕМС-акселерометров.

Будущие продвижения акселерометра

В следующем десятилетии, НАНО технологии создадут новые возможности и придадут новый вид этой области технологий.

Применение акселерометров

От промышленности до образования, акселерометр имеет большую область применения. Эта область располагаются от запуска развертывающейся воздушной камеры до контроля ядерных реакторов. Акселерометры используются для измерения статического ускорения (гравитация), наклонного положения объекта, динамического ускорения, рывков объекта, скорости, положение и вибрации объекта. Акселерометры становится все более и более распространенными: сотовые телефоны, компьютеры и моющие машины уже сейчас комплектуются акселерометрами.
Другие области практического применения:
• Измерение характеристик автомобиля
• Измерение вибраций машин
• Контроль передвижений разводных мостов
• Контроль укладки багажа

Выбор акселерометров

При выборе акселерометра руководствуются следующими факторами:

  1. Динамический диапазон: динамический диапазон это +/- максимальная амплитуда, которую акселерометр может измерить без искажения или потери выходного сигнала. Динамический диапазон обычно указывается в количествах g.
  2. Чувствительность: Чувствительность – масштабный коэффициент датчика или системы, выраженный в единицах измерения выходного сигнала относительно изменения входного сигнала. Чувствительность определяет способность акселерометра фиксировать движение. Чувствительность акселерометра обычно указана в милливольтметрах за g(mV/g).
  3. Частотный отклик: Частотный отклик – диапазон частот, в котором датчик обнаруживает движение и выдает действительный выходной сигнал. Частотный отклик обычно указан, так как диапазон измерения в Герцах (Гц).
  4. Чувствительная ось: Акселерометр проектируется для определения входных возмущений в проекции на ось. Акселерометр с одной осью может определять входные возмущения вдоль одной плоскости. Акселерометр с тремя осями может определять входные возмущения в любой плоскости и требуется для большинства задач.
  5. Размер и масса: Размер и масса акселерометра могут изменить характеристики объекта, на котором проводятся измерения. Масса акселерометра должна быть значительно меньше массы системы, которая мониторится.

Регистраторы ускорения

Акселерометр сам собой это всего лишь чувствительный элемент, для того, чтобы он стал полезен, датчик должен быть оснащен дополнительными элементами как, например, питание, логика, память и средствами для перевода выходного сигнала в наглядную форму. Регистратор ускорения объединяет все эти элементы в одном блоке.
Один пример регистратора ускорения – серия GP, проектируемая Sensr. Они – являются простыми компактными инструментами для фиксирования движения, рывка, столкновения, положения и температуры. Инструменты специально проектировались, чтобы быть простыми и понятными пользователю. Регистраторы данных GP серии обладают особенностями: фиксация данных в реальном времени, интерфейс USB, удобное в работе программное обеспечение, индикаторы тревоги, сигнализация событий и приспособлены для работы с трехосными МЕМС-акселерометрами.

Источник

Акселерометр: инструкция, схемы и примеры использования

Используйте акселерометр для определения величины ускорения свободного падения по осям X, Y, Z. Датчик отвечает за поворот дисплея в современном телефоне или подсчёт шагов в фитнес-браслете.

Если вам необходимо определить положение вашего девайса в пространстве, обратите внимания на IMU-сенсор на 10 степеней свободы.

Видеообзор

Акселерометр в обзоре IMU-модуля.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например, Uno.

На аппаратном уровне инерционный модуль общается с управляющей электроникой по шине I²C. Но не переживайте о битах и байтах: используйте библиотеку TroykaIMU и на выходе получите готовы данные.

Схема устройства

Подключите акселерометр к пинам питания и шины I²C — SDA и SCL платформы Arduino Uno. Для коммуникации используйте соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

С Troyka Slot Shield провода не понадобятся вовсе.

Вывод данных

В качестве примера выведем в Serial-порт величины ускорения свободного падения по осям X, Y и Z.

Пример для Espruino

В качестве мозга для считывания показаний с датчика рассмотрим платформы из серии Espruino, например, Iskra JS.

Схема устройства

Подключите акселерометр к пинам питания и шины I²C — SDA и SCL платформы Iskra JS. Для коммуникации используйте соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Iskra JS методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

С Troyka Slot Shield провода не понадобятся вовсе.

Вывод данных

В качестве примера выведем в консоль величины ускорения свободного падения по осям X, Y и Z.

Пример для Raspberry Pi

В качестве мозга для считывания показаний с датчика рассмотрим одноплатные компьютеры Raspberry Pi, например, Raspberry Pi 4.

Схема устройства

Подключите акселерометр к пинам SDA и SCL шины I²C компьютера Raspberry Pi.

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Cap, которая надевается сверху на малину методом бутерброда.

Программная настройка

Вывод данных

А написать пример кода для Raspberry Pi оставим вам домашним заданием.

Элементы платы

Акселерометр на LIS331DLH

Акселерометр выполнен на чипе LIS331DLH и представляет собой миниатюрный датчик ускорения, разработанный по технологии MEMS от компании STMicroelectronics. Адрес устройства по умолчанию равен 0x18, но может быть изменен на 0x19. Подробности читайте в разделе смена адреса модуля.

Регулятор напряжения

Линейный понижающий регулятор напряжения NCP698SQ33T1G обеспечивает питание MEMS-чипа и других компонентов сенсора. Диапазон входного напряжения от 3,3 до 5 вольт. Выходное напряжение 3,3 В с максимальным выходным током 150 мА.

Преобразователь логических уровней

Преобразователь логических уровней PCA9306DCT необходим для сопряжения датчика с разными напряжениями логических уровней от 3,3 до 5 вольт. Другими словами сенсор совместим как с 3,3 вольтовыми платами, например, Raspberry Pi, так и с 5 вольтовыми — Arduino Uno.

Troyka-контакты

Датчик подключается к управляющей электронике через две группы Troyka-контактов:

Смена адреса модуля

Иногда в проекте необходимо использовать несколько акселерометров. Для этого на модуле предусмотрены контактная площадка. Для смена адреса капните каплей припоя на отведённую контактную площадку.

Источник

Акселерометр: что это такое и как им определять наклон тела

Акселерометр — это прибор, позволяющий измерять ускорение тела под действием внешних сил. Схематически, этот прибор можно изобразить в виде массивного тела, которое способно передвигаться вдоль некоторой оси и соединено с корпусом пружинами. Смещение тела относительно центра оси можно измерить с помощью механической стрелки, как показано на рисунке.

В состоянии покоя тело находится на равном удалении от стенок прибора и стрелка указывает на середину шкалы. Если весь прибор толкнуть вправо (кадр B), то груз сместится по оси влево до момента, когда сила растянутой пружины уравновесит внешнюю силу. В этот момент, стрелка повернется и укажет на некоторое значение на шкале. Чем больше внешняя сила, тем дальше смещается груз, тем большее значение показывает стрелка. Когда сила перестанет действовать на тело, груз вернется на прежнее положение и прибор покажет на нулевое значение шкалы.

1. Электронный МЭМС-акселерометр

Разумеется, внешний вид современного акселерометра отличается от этой простой модели с пружинками, но не сильно. Как и прежде, для измерения ускорения нам требуется какое-то массивное тело, которое будет скользить по направляющей и удерживаться в нейтральном положении пружинками. При этом, всё это должно быть очень миниатюрным, чтобы поместиться в тот же смартфон.

На помощь приходит технология МЭМС (микроэлектромеханические системы). С помощью МЭМС удаётся выращивать механический акселерометр на кремниевой подложке таким же методом, которым создаются и обычные микросхемы.

Так выглядит МЭМС акселерометр на снимке, полученном при помощи микроскопа. Схема работы такого прибора представлена ниже.

Чтобы измерить смещение массивного тела вдоль оси прибора здесь применяется дифференциальный конденсатор. В состоянии покоя, расстояния между центральным электродом и двумя обкладками конденсатора (выделены оранжевым цветом) равны. При воздействии силы эти расстояния меняются, что в дальнейшем фиксируется специальной аналоговой измерительной системой.

Современные акселерометры имеют в своем составе сразу три измерительные оси, направленные перпендикулярно друг к другу. Это позволяет измерять ускорение тела в любом направлении.

2. Измерение углов наклона с помощью акселерометра

Все современные смартфоны умеют определять угол своего наклона относительно горизонта. Эта функция используется для автоматического поворота экрана, а также в различных играх, где управление происходит при помощи наклона. И всё это благодаря акселерометру. Но как устройство, определяющее ускорение, может помочь вычислить угол наклона?

Дело в том, что на акселерометр, как и на все тела на этой планете, действует сила гравитации. Эта сила придаёт телам ускорение когда они падают на землю. Повернем акселерометр так, чтобы его ось оказалась в вертикальном положении. В таких условиях груз сместится вниз, растянув при этом верхнюю пружину и сжав нижнюю. В этот момент акселерометр зафиксирует величину ускорения свободного падения — 9.8 м/с².

Попробуем использовать этот факт для вычисления угла наклона акселерометра относительно горизонта. Изобразим на схеме тело, на котором закреплен трёхосевой акселерометр. Обозначим эти три оси как: Xт, Yт и Zт.

Затем повернём тело на угол a вокруг оси относительно системы координат мира X, Y и Z. Предполагается, что ось мира Z направлена вдоль вектора силы гравитации (вверх), а оси X и Y вдоль горизонта. Мы смотрим на всю эту систему сбоку, так что оси мира — X и тела — Xт смотрят на нас, и мы их не видим.

В таком положении акселерометр, находящийся внутри тела зафиксирует проекции силы гравитации на все три оси: Gxт,Gyт,Gzт. При этом проекция Gxт на ось Xт будет равна нулю, так как эта ось расположена вдоль горизонта. Проекции Gyт (зеленый отрезок) и Gzт можно выразить с помощью теоремы о прямоугольном треугольнике:

Таким образом, зная G и одну из проекций Gyт или Gzт можно вычислить угол b отклонения акселерометра от вектора гравитации Z (от вертикальной оси):

Делая такие вычисления, важно учитывать, что G и Gyт должны измеряться в одинаковых единицах. Например, если мы преобразуем показания акселерометра к единицам гравитации (другими словами G = 1 — земная гравитация), то выражение для угла b примет вид:

И напоследок, вычислим искомый угол a наклона тела относительно горизонта:

Помним, что Gyт — это число, которое возвращает нам акселерометр.

К размышлению

Итак, мы выяснили, что одного лишь акселерометра вполне достаточно, чтобы вычислить угол наклона тела относительно горизонта. В следующем уроке мы рассмотрим конкретный пример работы с датчиком MPU6050 на Ардуино.

Однако, следует учитывать, что вычисление углов с помощью акселерометра возможно только тогда, когда прибор находится в состоянии покоя. Ведь если на прибор во время измерения подействует любая другая сила, акселерометр непременно её зафиксирует и тем самым внесет ошибку в расчеты.

Частично снять это вредное воздействие внешних сил можно с помощью фильтра низких частот, о котором мы уже рассказывали. Можно пойти вообще по другому пути — использовать не акселерометр, а гироскоп. С помощью него тоже можно вычислять углы наклона. А самый правильный способ — объединить вместе показания разных датчиков, о чем можно узнать в статье про комплементарный фильтр.

Источник

Акселерометр: что это, как работает и зачем нужен в фитнес-браслете, часах и смартфоне

Практически в каждом описании характеристик современного смартфона, фитнес-браслета или умных часов можно встретить упоминание датчика под названием «акселерометр». Еще его могут называть «датчик ускорения» или G-сенсор. Что это такое, как работает и зачем нужен в телефоне, часах или браслете, читайте далее.

Акселерометр: что это и зачем нужен?

Простым языком, акселерометр – это прибор, измеряющий ускорение (величину изменения скорости). Название прибора происходит от латинского «accelero», что дословно переводится, как «ускоряю» и греческого «metreō», что в переводе означает «измеряю».

Измерение величины динамического ускорения позволяет определить, насколько быстро и в каком направлении движется устройство с акселерометром. По конструктивному исполнению акселерометры подразделяются на однокомпонентные, двухкомпонентные, трёхкомпонентные (одноосевые, двух осевые и трехосевые). Например, 3-осевой датчик ускорения может определять величину и направление ускорения как векторную величину во всех трех осях.

Часто этот датчик путают с гироскопом, но это совершенно разные датчики, хотя часто они взаимодополняют друг друга для достижения более точных результатов, а иногда даже могут выполнять одни и те же функции. Отличаются же эти датчики принципом работы и эффективностью при выполнении конкретной задачи.

В основном в устройствах акселерометр используется для определения ориентации, ударов, вибрации и ускорения координат. Например, в смартфонах именно акселерометр отвечает за переворот картинки при изменении положения корпуса, а фитнес-браслетах он активирует экран при вращении запястья.

Где применяется акселерометр?

Датчик ускорения применяется в самых различных сферах:

  • Навигационные устройства летательных аппаратов. Без приборов на основе гироскопов и акселерометров не может обойтись ни один самолет, вертолет и даже квадрокоптер. Так, например, для работы квадрокоптера необходимо минимум три гироскопа.
  • Автомобили. В автомобилях акселерометр интегрируется в системы безопасности и стабилизации. Прибор определяет экстренное торможение или дорожно-транспортное происшествие и запускает электрическую цепь, которая заставляет подушки безопасности срабатывать.
  • Промышленность. Датчики активно используются в различных станках, агрегатах и производственных линиях в системах защиты для отключения питания в случае поломок или при достижении критических значений.
  • Электроника. В компьютерах и ноутбуках акселерометр применяется для защиты жестких дисков от ударов и падений. В случае обнаружения падения прибор отдает команду считывающим головкам принять безопасное положение для избегания повреждения диска и потери данных.
  • В смартфонах и планшетах акселерометр отвечает за смену ориентации экрана при повороте корпуса, а также за управление игровым процессом при наклонах гаджета. В фитнес-браслетах и часах акселерометр применяется для подсчета шагов, отслеживания сна и активации экрана поднятием запястья.
  • Бытовая техника. Да, акселерометрами могут оснащаться даже стиральные машины, утюги и тепловентиляторы. Например, в утюгах акселерометр, обнаружив его падение, отключает питание, чтобы не допустить возникновения пожара.

Как работает акселерометр?

Большинство устройств оснащается емкостными, пьезорезистивными и пьезоэлектрическими приборами. Часто акселерометр представляет собой микроэлектромеханическую систему (MEMS), содержащую несколько компонентов, каждый размером от 1 до 100 микрометров. Размер же прибора обычно не превышает габариты спичечной головки.

Механический акселерометр

Объяснить принцип работы акселерометра проще на механическом приборе. Он состоит из пружины, прикрепленной к корпусу, подвижной массы и демпфера. Масса или, проще сказать, грузик, крепится к пружине. С обратной стороны грузик поддерживает демпфер, гасящий вибрации грузика. Во время ускорения корпуса пружина деформируется (растягивается или сжимается) по противоположным осям под воздействием грузика, стремящегося сохранить свое первоначальное положение, то есть отстать или опередить корпус. На величине деформации и основываются вычисления прибора.

Для получения информации о положении предмета в трехмерном пространстве используется три таких прибора, объединенных в один комплекс.

Конечно же, никто не будет «запихивать» в компактный фитнес-браслет или смартфон такую громоздкую конструкцию. Поэтому она заменяется миниатюрным чипом. Хотя чип и более сложный, чем прибор с шариком и пружиной, он имеет те же основные элементы.

У такого чипа имеется корпус, который крепится к часам или смартфону, «гребенчатая» секция с отведенными по сторонам пластинами и ряд фиксированных пластин, снимающих показания. Эта секция может перемещаться вперед и назад, изменяя значение напряженности поля вокруг контактов. Полученные данные передаются на обработку электроникой и программным обеспечением, после чего происходит вычисление физического расположения устройства.

Внутренняя работа акселерометра

Но самое интересное, как изготавливаются такие акселерометры. При толщине примерно 500 микрон ни один инструмент не сможет его создать. Вместо этого инженеры используют некоторые уникальные химические свойства кремния и силикона с другими веществами. Весь процесс изготовления полностью автоматизирован и выполняется на конвейерных линиях без участия человека.

Также понять как работает акселерометр поможет короткое видео ниже:

Чем отличается акселерометр от гироскопа?

Хотя в некоторых случаях гироскоп и акселерометр и могут выполнять одни и те же функции, это два абсолютно разных датчика, которые часто используются в паре для достижения максимального эффекта. Часто такой дуэт называют 6-осевым датчиком.

Акселерометр не умеет точно измерять угол поворота устройства в пространстве, а может лишь примерно его оценить. На практике это может выражаться в ложных срабатываниях и задумчивости в повороте экрана. И тут на помощь приходит гироскоп. Не вдаваясь в подробности о принципе работы данного прибора, скажем, что он может определять не только угол поворота устройства, но и скорость поворота, что, например, во время игры на смартфоне позволяет реализовать более быстрое и точное управление.

Поэтому в большинстве устройств эти два прибора устанавливаются совместно для достижения наибольшей эффективности.

Акселерометр в фитнес-браслете и смарт-часах

В фитнес-браслетах и умных часах акселерометр отвечает за несколько функций. Обнаруживая поднятие или вращение руки, он отдает сигнал для включения экрана. Также именно акселерометр отвечает за подсчет шагов и мониторинг сна. На акселерометре «завязана» и работа функции «Умный будильник», который будит владельца гаджета в фазе быстрого сна.

Акселерометр в телефоне

Первый акселерометр появился в телефоне Nokia 5500. Там он использовался для подсчета пройденных шагов. Такое решение многим понравилось и с тех пор компания Apple стала оснащать таким датчиком все модели своих iPhone. А начиная с iPhone, если не ошибаюсь, четвертого поколения, в дополнение к акселерометру компания стала оснащать свои смартфоны гироскопом. После этого наличие этой пары датчиков стало стандартом для большинства производителей мобильных устройств.

Акселерометр в телефоне отвечает не только за поворот экрана при наклоне корпуса. Он так же как и в случае с фитнес-браслетом позволяет вести учет пройденного расстояния. Еще акселерометру нашли применение в системных жестах. Например, отключение звука телефона встряхиванием или переворотом смартфона вниз экраном.

Как откалибровать акселерометр?

В некоторых случаях может потребоваться настройка или калибровка акселерометра. Например, если телефон не реагирует на поворот корпуса или не точно считаются шаги. Для смартфонов под управлением операционной системы ANDROID для этих целей есть несколько сторонних приложений, например GPS Status & Toolbox. Для iPhone таких приложений нет, поэтому в случае сбоев придется ограничиться перезагрузкой устройства. Обычно это помогает.

Некоторые производители фитнес-браслетов и смарт-часов также позволяют откалибровать акселерометр. Точнее, не откалибровать, а «обучить» с помощью «Меток поведения», то есть помогая датчику более точно понимать, какое именно действие владелец гаджета выполняет в тот или иной момент. Такая возможность есть у владельцев популярной линейки Xiaomi Mi Band и ряда других моделей.

Сергей Васильев

Интересуюсь всем, что касается умных часов, фитнес-браслетов и другой носимой электроники. С удовольствием поделюсь последними событиями в мире гаджетов, постараюсь помочь подобрать оптимальную модель и разобраться с основными настройками.

Источник

Читайте также:  Калибровка средств измерений доклад