Меню

Как измерить величину каждого угла треугольника abc



Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

.
.
, .

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.
.

Далее, из формулы

.
. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,
.

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

.

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

, .
, .

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Источник

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

.
.
, .

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.
.

Далее, из формулы

.
. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,
.

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

.

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

, .
, .

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Источник

решебники и ГДЗ

гдз — готовые домашние задания

ГДЗ и РЕШЕБНИКИ

Бунимович Е.А. Кузнецова Л.В. Минаева С.С.

гдз решебник математика 6 класс

учебник ответы готовые домашние задания

РЕШЕНИЕ ЗАДАЧА 63

OCR перевод условия задачи 63

тетрадь тренажер Бунимович математика 6 класс

63. 1) В каждом треугольнике измерьте с помощью транспортира величины углов. Результаты занесите в таблицу. Найдите сумму углов треугольника. Сделайте вывод: сумма углов треугольника равна 180 градусов. 2) К этому выводу можно прийти и с помощью рассуждений. Для этого выполните следующие построения: 1. Продлите стороны АВ и СВ за вершину В. 2. Начертите прямую, проходящую через вершину В и параллельную прямой АС. 3. Отметьте угол с вершиной в В: а) равный углу А; б) равный углу С; в) равный углу В. Посмотрите на рисунок: все три угла треугольника как бы собрались вместе в вершине В. И оказывается, что вместе они составляют развёрнутый угол, т. е. их сумма равна 180°. 3) Найдите неизвестные углы треугольника по данным, указанным на рисунках. 4) Найдите углы равнобедренного треугольника, если: а) угол при вершине равен 28°, б) угол при основании равен 77°

Источник

Как измерить величину каждого угла треугольника abc

Найдите угол ABC. Ответ дайте в градусах.

Впишем в окружность квадрат так, как показано на рисунке. Стороны квадрата отсекают на окружности равные дуги. Поэтому градусная мера дуги AC, на которую опирается угол ABC, составляет полного угла 360°, т. е. равна 270°. Угол ABC вписанный, поэтому он равен половине дуги, на которую опирается. Следовательно, угол ABC равен 135°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 72°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 72°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 54° = 36°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — середина окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 92°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 44° = 46°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 56°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — середина окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 56°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 62° = 28°.

На окружности отмечены точки A и B так, что меньшая дуга AB равна 152°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.

Пусть точка O — середина окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 152°. Треугольник AOB — равнобедренный. Значит,

Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 14° = 76°.

Найдите угол . Ответ дайте в градусах.

Угол опирается на дугу, градусная мера которой составляет всей окружности, т.е. градусов. Вписанный угол равен половине дуги, на которую он опирается, т.е.

Найдите угол . Ответ дайте в градусах.

Угол опирается на дугу, которая составляет четверть окружности, т.е. 90°. Так как угол — вписанный, то он равен половине дуги, т.е. 45°

Найдите угол . Ответ дайте в градусах.

Проведем дополнительные построения. Угол — центральный и равен 135°. Угол опирается на ту же дугу, что и угол , но является вписанным, поэтому равен половине угла т.е. 67,5°.

Найдите угол . Ответ дайте в градусах.

Центральный угол равен 135°. Большая дуга равна 360°-135°=225°. Угол опирается на эту дугу, но является вписанным и равен половине этой дуги, т.е. 112,5°.

Найдите угол . Ответ дайте в градусах.

Проведём дополнительное построение, как показано на рисунке. Заметим, что тангенс угла равен единице, следовательно, центральный угол равен 45°. Угол опирается на ту же дугу, что и , но является вписанным и равен половине угла , т. е. 22,5°.

Найдите угол

Искомый угол опирается на часть окружности: . Так как угол является вписанный, он равен половине дуги, на которую опирается, т.е.

Найдите угол . Ответ дайте в градусах.

Проведем дополнительные построения. Угол — центральный и равен 45°. Угол опирается на ту же дугу, что и , но является вписанным, поэтому равен половине угла , т. е. 22,5°.

Источник

Читайте также:  Прибор для измерения мощности экспозиционной дозы гамма излучения