Меню

Как измерить величину угла линейкой



Как измерить угол линейкой

Измерение углов с помощью компаса.

Вначале мушку визирного устройства компаса устанавливают на нулевой отсчет шкалы. Затем поворотом в горизонтальной плоскости совмещают через целик и мушку линию визирования с направлением на левый местный предмет (цель). После этого, не меняя положения компаса, визирное устройство переводят в направление на правый местный предмет (цель) и снимают по шкале отсчет, который будет соответствовать значению измеренного угла в градусах.

При измерении угла в тысячных линию визирования совмещают вначале с направлением на правый предмет (цель), так как счет тысячных возрастает против хода часовой стрелки.

С помощью линейки с миллиметровыми делениями можно измерить угол в делениях угломера и в градусах. Если линейку держать перед собой на расстоянии 50 см от глаза (рис.8.47), то 1 мм на линейке будет соответствовать двум тысячным (0 – 02). При измерении угла необходимо подсчитать на линейке число миллиметров между местными предметами (целями) и умножить на 0-02. Полученный результат будет соответствовать значению измеряемого угла в тысячных. На рис.8.47 угол между столбами равен 0-32 (16 мм • 0 – 02), а высота дерева – 0 – 21 (10,5 мм – 0 – 02).

Рис.8.47. Измерение углов с помощью линейки

При измерении угла в градусах линейка выносится перед собой на расстояние 60 см. В этом случае 1 см на линейке будет соответствовать 1°.

Точность измерения углов с помощью линейки зависит от точности ее выноса на расстояние 50 (60) см перед собой.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10455 – | 7915 – или читать все.

Люди обычно сталкиваются с транспортирами в математике, когда учатся в школе создавать точные геометрические фигуры. Возможно, у многих из них никогда больше не будет причин снова использовать эти приборы, тем не менее транспортиры имеют долгую историю применения в различных областях.

История изобретения

Происхождение этого математического инструмента восходит к жрецам в Египте и Вавилоне, которые установили меру углов в градусах, минутах и секундах. Однако до времён классической Греции тригонометрия не использовалась в математике.

Во втором веке до нашей эры астроном Гиппарх из Никии изобрёл тригонометрический стол, для измерения треугольников. Затем Птолемей включил в свою великую астрономическую книгу «Альмагест» таблицу, с угловыми приращениями от 0 до 180°, с погрешностью менее 1/3600 единиц. Он также объяснил метод составления этой таблицы, и на протяжении всей книги приводил много примеров того, как вычислять с помощью неё неизвестные элементы фигур.

Птолемей также был автором, так называемой теоремы Менелая для решения сферических треугольников, и на протяжении многих веков его тригонометрия была основным пособием для астрономов.

Возможно, в то же время, учёные Индии также разработали тригонометрическую систему, основанную на функции синуса, которая, в отличие от используемого в настоящее время синуса, была не пропорцией, а длиной стороны, противоположной углу в прямом треугольнике этой гипотенузы. Индийские математики использовали разные значения для этого в своих таблицах.

Томас Бландевиль рассказал о приборе специально созданном, для рисования и измерения фигур в своём «Кратком описании универсальных карт» 1589 года. Как видно из названия, он применял его, чтобы править навигационные карты для использования в высоких широтах.

Другие европейские математики также описывали подобные приборы примерно в то же время. Независимо от того, кто первым придумал этот инструмент, к началу XVII века он вошёл в стандартную практику мореплавателей и геодезистов. К XVIII веку транспортиры начали появляться в учебниках по геодезии и геометрии.

Транспортиры в современном понимании возникли во второй половине XVIII века, когда такие учёные, как Джесси Рамсден и Георг Фридрих Брандер, усовершенствовали ранее созданные устройства.

В то время предпочтительными материалами для их изготовления были:

В первой половине XX века начали применять олово и целлулоид.

Называться транспортиром (рус.) прибор стал в 1610 году. Термин произошёл от средневекового слова protractor, что означает «переносить», который, в свою очередь, произошел от латинского слова protrahere «тянуть вперёд».

Разновидности и использование

Транспортир — это простой гониометр для измерения или создания угла. Он выглядит как круглый или полукруглый диск с делением. Диск может быть изготовлен из пластика, прочной бумаги или листового металла. Типичными являются диаметры от 8 до 15 см и деления на 1° и 0,5°, при измерении также 0,5 Гон (новый градус). Точность составляет от 0,1 до 0,5° в зависимости от диаметра шкалы. Более точные приборы имеют поворотную рейку со шкалой (длина до миллиметра).

Частично из-за различного использования их изготавливают во многих формах: знакомый полукруг, а также круги, прямоугольники, квадраты или четверть круга (квадранты). Они также могут иметь различные диаметры. Их изготавливают из латуни, стали, дерева, слоновой кости или пластика. Самой распространённой формой является полукруг с ограничительной шкалой в 180 градусов.

Угловой транспортир — градуированный круглый инструмент с одной поворотной рукой; используется для измерения или разметки. В строительстве часто требуется отмерить угол в 90 градусов. Иногда прилагается шкала Вернье, чтобы дать более точные показания. Прибор широко применяется для изготовления архитектурных и механических чертежей, хотя его использование уменьшилось с появлением современного программного обеспечения для рисования.

Универсальные транспортиры скоса используются изготовителями инструментов; поскольку они делают измерения посредством механического контакта с предметом, то классифицируются как механические транспортиры.

Угловой транспортир применяется для того, чтобы измерить и проверить углы с очень жёсткими допусками. Он считывает до 5 угловых минут (5 или 1/12°) и может измерять от 0 до 360°.

Сегодня также применяются электронные приборы, которые обычно работают с поворотным датчиком. Кроме того, связанными с транспортиром приборами являются:

  • теодолит;
  • оптический транспортир в строительной промышленности и геодезии;
  • инклинометр для определения уклонов и косвенной альтиметрии;
  • секстант для навигации.

Измерение градусов угла

Для того чтобы научиться пользоваться транспортиром инструкция нужна на начальном этапе. Для его освоения достаточно нескольких минут и примеров (смотреть онлайн) того, как можно измерить и построить угол с помощью этого прибора.

Измерить угол, значит найти его величину. Углы разделяют на три типа: острый, тупой и прямой. Прямоугольный имеет 90 градусов. Все углы что имеют больше этого значения называются тупыми, и соответственно меньше 90 градусов называются острыми. Развёрнутый угол имеет 180 градусов.

Понимание того, что углы являются частями окружностей, полезно, потому что тогда конструкция транспортира обретает смысл. Поскольку полный круг имеет 360º, отдельный угол должен быть меньше этого числа, потому что он часть круга.

Читайте также:  Как измерить пояс у женщин

Алгоритм измерения следующий: для того чтобы измерить угол транспортиром необходимо приложить его центр верхней кромки линейки к вершине измеряемого угла. Вершина — это точка, в которой две из трёх сторон треугольника пересекаются.

Нижнюю планку (основание) транспортира нужно выставить горизонтально. Каждый транспортир имеет точку, спроектированную в центре основания, Эта средняя точка располагается на вершине угла, который должен быть измерен или нанесён на график. Другая сторона должна пересекать транспортир в одной из точек его дуги.

Если вторая сторона (линия) до дуги не доходит нужно продолжить её с помощью простой или масштабной линейки. То число, на шкале дуги, которое будет пересечено линией и есть величина угла в градусах.

Для удобства на большинстве транспортиров сделано две шкалы, внутренняя и внешняя, которые отображают числа в каждой строке.

Построение угла

Берётся чистый лист бумаги в клетку. На нём карандашом отмечается точка, от которой проводиться прямая линия, как одна из сторон будущего угла. Эта черта служит для того, чтобы задать направление второй стороне. В простых упражнениях, для приобретения навыка построения угла, линия проводится горизонтально.

Центр основы транспортира располагается на любом из концов черты, который будет вершиной угла. Эта точка отмечается на бумаге карандашом. И именно к этому месту, внутри отверстия и присоединяется вершина угла, одна из сторон которого должна совпадать в горизонтальной плоскости с внутренней стороной линейки транспортира.

Затем на шкале отмечается необходимый градус. С внутренней стороны отверстия также обозначается точка возле этого градуса. И от вершины проводится прямая линия к этой точке. Таким образом, получается необходимый угол.

Для того чтобы правильно пользоваться транспортиром очень важно его выровнять, и точно прикладывать, для получения верных измерений.

Пересечённые линии в верхней части прямой кромки линейки должны совпадать с вершиной (конечной точкой), где соединяются два луча.

Это прозрачный онлайн-транспортир, также помогает измерять углы на изображении, вы можете легко измерить угол любого объекта вокруг вас, сфотографировать и загрузить его, затем перетащить среднюю точку транспортира к вершине угла.

Как пользоваться этим онлайн-транспортиром?

  • Вы можете измерить угол любого реального объекта прямо на вашем экране
  • Если вы хотите переместить транспортир, перетащите его середину.
  • Нажмите на край снаружи транспортира, чтобы добавить к нему метку
  • Размещение двух кнопок покажет градусы этого угла
  • Двойной щелчок на кнопке удалит ее

Каждый раз, когда я хочу измерить угол, я всегда не могу найти транспортир. К счастью, вот онлайн-транспортир, который удобен и практичен. Теперь мы можем использовать ноутбуки, компьютеры, планшеты или смартфоны для измерения угла наклона чего угодно, вокруг нас в любое время и в любом месте.

Если вы хотите измерить что-то маленькое, просто поместите его на экран и измерьте прямо; Если вы хотите измерить что-то большее, Вы можете сделать снимок и загрузить его, а затем переместить центральную точку транспортира, чтобы измерить его угол.

Используйте камеру или изображение для измерения угла

Вы можете сфотографировать любой объект, который вы хотели бы измерить, например, автомобиль, дорога, дом, лестница или гора, транспортир прозрачный, после того как вы загрузили изображение, оно будет отображаться в фоновом режиме. затем вы можете убрать транспортир или добавить кнопки, чтобы определить градусы углов, загрузить файл только принять файл изображения в форматах JPG, JPEG, GIF, PNG

На панели управления если цвет фона близок к транспортиру, и это не легко отличить, Вы можете изменить цвет транспортира, чтобы видеть это ясно. Также вы можете переместить его, уменьшить или увеличить размер транспортира, в соответствии с вашими потребностями.

Углы и градусы

  • Углы измеряются в градусах. Символом градусов является маленький кружок °
  • Полный круг составляет 360 ° (360 градусов)
  • Полукруг или прямой угол 180 °
  • Четверть круга или прямой угол составляет 90 °

Что вы думаете об этом транспортире?

Посетите эту страницу на вашем смартфоне

Изменить текстовое описание на этой странице

Мы всегда стремимся обеспечить лучший интерфейс и пользовательский опыт, любые предложения по улучшению приветствуются. Текст этой веб-страницы автоматически генерируется Google Translate, это может быть неправильно, если вы хотите предоставить лучшее текстовое описание, пожалуйста, нажмите эту кнопку. ›››
Пожалуйста, будьте вежливы и не используйте это злонамеренно.

This transparent online protractor is 100% self-developed by us, copyright © www.ginifab.com, all rights reserved.

Disclaimer:
Use of the protractor within this website is free. Whilst every effort has been made to ensure the accuracy of the protractor published within this website, you choose to use them and rely on any results at your own risk. We will not under any circumstances accept responsibility or liability for any losses that may arise from a decision that you may make as aresult of using this protractor. Similarly, we will not be requesting a share of any profits you may make as a result of using the protractor.

Источник

Измерение углов с помощью линейки

Измерение углов с помощью компаса.

Вначале мушку визирного устройства компаса устанавливают на нулевой отсчет шкалы. Затем поворотом в горизонтальной плоскости совмещают через целик и мушку линию визирования с направлением на левый местный предмет (цель). После этого, не меняя положения компаса, визирное устройство переводят в направление на правый местный предмет (цель) и снимают по шкале отсчет, который будет соответствовать значению измеренного угла в градусах.

При измерении угла в тысячных линию визирования совмещают вначале с направлением на правый предмет (цель), так как счет тысячных возрастает против хода часовой стрелки.

С помощью линейки с миллиметровыми делениями можно измерить угол в делениях угломера и в градусах. Если линейку держать перед собой на расстоянии 50 см от глаза (рис.8.47), то 1 мм на линейке будет соответствовать двум тысячным (0 — 02). При измерении угла необходимо подсчитать на линейке число миллиметров между местными предметами (целями) и умножить на 0-02. Полученный результат будет соответствовать значению измеряемого угла в тысячных. На рис.8.47 угол между столбами равен 0-32 (16 мм • 0 — 02), а высота дерева — 0 — 21 (10,5 мм – 0 — 02).

Рис.8.47. Измерение углов с помощью линейки

При измерении угла в градусах линейка выносится перед собой на расстояние 60 см. В этом случае 1 см на линейке будет соответствовать 1°.

Точность измерения углов с помощью линейки зависит от точности ее выноса на расстояние 50 (60) см перед собой.

Читайте также:  Теория квантового измерения фон неймана

Источник

Транспортир – как правильно пользоваться инструментом для построения и измерения углов?

Начнем, пожалуй, с того, что же такое транспортир. Транспортир – это инструмент для измерения градусного значения углов. Чаще всего такой инструмент имеет полукруглую форму. Но есть и исключения, а именно транспортиры, которые имеют полностью круглую форму (360 градусов).

Введение

Какие-то вещи можно измерить, какие-то нельзя. Например, нельзя измерить дружбу или любовь. А расстояние, вес, температуру вполне можно. Чтобы что-то измерять, нужно всем договориться о единицах измерения.
Метр, дюйм, аршин – это и есть такие договоренности при измерении длины. Эталонный метр хранится во Франции, в Палате мер и весов. Килограмм, фунт, пуд – это договоренности для измерения массы. Эталонный килограмм тоже хранится в Палате мер и весов.

Единицы измерения придуманы для конкретных величин. В секундах не измерить вес, а в аршинах – время.

В геометрии такая же ситуация. Есть сантиметры, для измерения длин отрезков, но они не подходят для измерения углов. Для измерения углов есть свои единицы измерения. На этом уроке мы рассмотрим одну из них, а именно градусы.

Определяем вертикальность стен и углов

  • отвес,
  • либо длинное (2 м) правило с пузырьковым уровнем,
  • либо пузырьковый уровень меньшей длины (от 30 см) и ровную длинную рейку или правило без уровня, к которой прислоним уровень.

Самое дешёвое — отвес, попробуем работать им. Его даже своими руками можно сделать, взяв капроновую нить и привязав к ней с одного конца грузик, скажем гайку, грамм на 100, а лучше на 200.

Отматываем верёвку в длину потолка, грузик болтается снизу, до пола не достаёт. Далее прислоняем верхний край нити к стене и смотрим на грузик…

Стена может быть завалена как в одну сторону, так и в другую

Так проходим по углам и по центру стены. Удобнее, конечно, замерять правилом с пузырьковым уровнем. Если отклонения не превышают 15 мм (это по СНиП), то всё в порядке. Если больше, опять же нужно выравнивать, НО необходимо только на кухне и в ванной комнате. Там желательно, что бы вообще отклонений не было.

В ванной будет уложена плитка или панели, ну или вы вообще ошпаклюете и покрасите стены, по-этому тут тоже по желанию.

Градусы

Разделим полный угол на 360 равных частей. Для этого удобно использовать окружность. Поделим ее на 360 частей и соединим каждое полученное деление с центром. Получим 360 равных углов (см. Рис. 1).

Рис. 1. Окружность, разделенная на 360 равных углов

Один такой маленький угол назовем углом в 1° (см. Рис. 2).

Не важно, какого размера будет окружность, которую мы делим. Поделим обе окружности на 360 частей, получим равные углы в 1°, хотя стороны одного угла визуально длиннее, чем у другого (см. Рис. 3).

Рис. 3. Углы равны

Стороны углов можно продолжать бесконечно, от этого размер угла не меняется (см. Рис. 4).

Рис. 4. Более явный пример равенства углов

Устройство инструмента

Чаще всего малка-угломер используется в столярном деле, но встретить его можно и в других областях ремонта и отделки помещений. Внешне приспособление схоже со слесарным поверочным угольником, однако малка имеет двигающуюся часть, благодаря которой можно удобно снимать показания.

Рассматриваемый инструмент имеет следующие компоненты:

  • Колодка с прорезью. Это основная часть угломера, которая позволяет узнать наклон угла.
  • Подвижное перо. Оно продевается через паз, который есть в колодке: это позволяет экономить место и делает прибор более удобным в использовании.
  • Барашек, служащий для фиксации инструмента.

В продаже можно встретить как металлические, так и деревянные устройства. Деревянный вариант более безопасен для поверхностей и не оставляет царапин.

Полный, развернутый, прямой угол

Величина любого угла – это сколько раз в него умещается угол в 1°.

Вот мы видим угол 13° (см. Рис. 5).

Понятно, что полный угол состоит из 360 таких углов. То есть он равен 360° (см. Рис. 6).

Рис. 6. Полный угол

Развернутый угол – это половина полного угла. Он равен (см. Рис. 7).

Рис. 7. Развернутый угол

Прямой угол является половиной развернутого и равен 90° (см. Рис. 8).

Рис. 8. Прямой угол

Эталон градуса нет нужды где-то хранить. Если нужно, то всегда можно полный угол разделить на 360 частей, или развернутый – на 180, или прямой – на 90.

Транспортир

Линейка нужна для того, чтобы измерить имеющийся отрезок или начертить отрезок нужной длины. Чтобы измерить угол или начертить угол нужной величины, мы тоже используем линейку, только не прямую, а круглую. Она называется транспортиром (см. Рис. 9).

Рис. 9. Транспортир

Единицы измерения на ней – градусы. Шкала начинается с нуля и заканчивается 180°.То есть максимальный угол, который мы можем измерить или начертить, – это 180°, развернутый.

Транспортиры могут быть разных размеров, но это не влияет на то, какого размера углы ими измеряют. Для более крупного транспортира у углов нужно чертить стороны длиннее.

Малка-угломер своими руками

Малка-угломер – довольно доступный инструмент, который можно купить практически в любом строительном магазине, однако не всегда у мастера есть на это время, а прибор может потребоваться срочно. В этом случае его можно сделать самостоятельно. Для этого потребуется:

  • Брусок дерева, из которого будет сделана колодка. Подойдёт небольшой отрезок до 30 мм.
  • Кусок фанеры, толщина которой должна быть больше 3 мм. Толще 5 мм фанеру лучше не брать. Из этого материала делается подвижная часть прибора.
  • В качестве крепежа можно использовать болт и гайку.
  • При помощи дрели нужно просверлить отверстие под болт.

Начинать сборку малки-угломера нужно с колодки. Для этого отмеряют 10 см на заготовке и отпиливают нужную длину. После этого можно переходить к изготовлению прорези под перо, для чего потребуется надрезать колодку с торца.

Перо инструмента изготавливается из фанеры, а если её нет, то можно использовать схожий по размеру материал – например, лист пластика. На листе делаются отметки в 20-40 мм: это будут размеры самого пера. Их можно менять на своё усмотрение. Если вы все сделали правильно, то перо и надрез в бруске при сложении будут образовывать острый угол. Детали скрепляются болтом под углом 90 градусов; перо должно иметь возможность двигаться. Лишнее нужно срезать и зачистить.

Примеры

1. Измерим пару углов.

Прямая часть транспортира совмещается с одной стороной угла, центр транспортира с вершиной угла. Смотрим, где оказалась вторая сторона угла, – 54° (см. Рис. 10, 11).

Читайте также:  Измерение температуры сотрудникам правила

Рис. 10. Измерение угла

Проделаем то же самое со вторым углом, 137°.

Рис. 11. Измерение угла

Если сторона угла не достает до шкалы, то ее нужно сначала продлить.

2. Начертим углы 29°, 81° и 140°.

Сначала чертим одну сторону угла по линейке (см. Рис. 12).

Рис. 12. Построение одной стороны угла

Отмечаем вершину. Совмещаем с транспортиром. Отмечаем точкой нужное значение угла – 29° (см. Рис. 13).

Рис. 13. Использование транспортира для построения углов

Убираем транспортир. Соединяем полученную точку с вершиной (см. Рис. 14).

Точно так же строим два других угла (см. Рис. 15).

Рис. 15. Построение углов

Набор школьника

Неспроста учащиеся младшего звена не знакомы с транспортиром. При его применении должна быть заложена некая база знаний. Для полноценной работы с ним на уроке ребята изучают ряд сопутствующих предметов. Прежде чем узнать, что такое транспортир, школьники должны в совершенстве овладеть прямой линейкой, чертить ровные линии, изучить сложение и вычитание, освоить циркуль, знать геометрические фигуры и так далее. Весь этот процесс занимает время, и только окончив начальную школу, ученик может добавить транспортир в свой набор инструментов.

Ученикам сейчас предлагаются школьные канцтовары в огромном выборе. Транспортир не исключение. Производители стараются угодить самым требовательным запросам покупателей. Инструменты изготавливают в различной цветовой гамме. Яркие цвета всегда нравятся детям. Порой даже в одном классе не сыскать одинаковых транспортиров, что облегчает при утрате их поиск. Формы и размеры каждый выбирает на свой вкус.

Большинство таких товаров выпускают из пластмассы, и это значительно уменьшает его стоимость. Но есть деревянные и даже железные транспортиры. Как показывает практика, металлические хоть и непрозрачны, но практичнее в том плане, что шкала не стирается, а это позволяет гораздо дольше применять его в действии, с точностью определяя углы.

Транспортир не так востребован школьниками, как линейка, но он сопровождает учеников вплоть до выпускного экзамена. Некоторые из выпускников школы выбирают специальности, которые связаны с измерением и построением углов, проектированием зданий и сооружений, работой с чертежами. В силу своих профессий им постоянно приходится сталкиваться с транспортирами и его производными. Но и бывшие одноклассники нынешних инженеров, порой даже с глубочайшим гуманитарным уклоном, без труда вспомнят навыки обращения с этим предметом и определят количество градусов у любого угла.

Измерение величин «Чужими единицами»

На самом деле бывает, когда мы одни величины измеряем единицами, казалось бы, для них не предназначенными, «чужими» единицами.

Можно ли измерить расстояние в минутах? Да, мы часто используем этот способ. «От моего дома до школы 5 минут». Если быть точнее, то «5 минут пешком». Мы здесь используем известную всем величину – скорость пешехода. И величина «5 минут» на самом деле означает «расстояние, которое пешеход проходит за 5 минут». Скорость пешехода – 5 км/ч, 5 минут – это часа, умножим одно на другое. Получаем примерно 400 метров. Не очень точно, зато удобно.

Точно по такому же принципу устроена другая единица измерения расстояния – световой год. Световой год – расстояние, которое проходит свет за 1 год. С помощью этой единицы меряют расстояния между звездами.

Очень распространенный пример использования «чужой» единицы измерения – это измерять вес в килограммах. На самом деле килограмм – единица измерения массы, а вес – это другая физическая величина. Если хотите подробнее узнать, в чем разница между массой и весом, и почему измерять вес в килограммах не верно, то наберите в поисковой системе «масса и вес» и получите множество пояснений по этому поводу.

Атмосферное давление мы до сих пор измеряем в миллиметрах (миллиметрах ртутного столба).

Хотя для угла есть свои «родные» единицы измерения – градусы, которые мы и проходим на этом уроке, все-таки его можно измерять и с помощью линейных величин, например сантиметров. Если нужно измерить угол , то можно достроить его до треугольника, так чтобы один угол был прямым, и разделить длину одной стороны на другую.

Получим величину угла , которая называется тангенсом.

Если увеличить треугольник, то ничего не изменится (см. Рис. 16).

Ведь во сколько раз увеличилась одна сторона, во столько и вторая.

То есть величины часто можно измерять «чужими» единицами, но это чуть сложнее, там нужны некоторые дополнительные договоренности.

История изобретения

Происхождение этого математического инструмента восходит к жрецам в Египте и Вавилоне, которые установили меру углов в градусах, минутах и секундах. Однако до времён классической Греции тригонометрия не использовалась в математике.

Во втором веке до нашей эры астроном Гиппарх из Никии изобрёл тригонометрический стол, для измерения треугольников. Затем Птолемей включил в свою великую астрономическую книгу «Альмагест» таблицу, с угловыми приращениями от 0 до 180°, с погрешностью менее 1/3600 единиц. Он также объяснил метод составления этой таблицы, и на протяжении всей книги приводил много примеров того, как вычислять с помощью неё неизвестные элементы фигур.

Птолемей также был автором, так называемой теоремы Менелая для решения сферических треугольников, и на протяжении многих веков его тригонометрия была основным пособием для астрономов.

Возможно, в то же время, учёные Индии также разработали тригонометрическую систему, основанную на функции синуса, которая, в отличие от используемого в настоящее время синуса, была не пропорцией, а длиной стороны, противоположной углу в прямом треугольнике этой гипотенузы. Индийские математики использовали разные значения для этого в своих таблицах.

Томас Бландевиль рассказал о приборе специально созданном, для рисования и измерения фигур в своём «Кратком описании универсальных карт» 1589 года. Как видно из названия, он применял его, чтобы править навигационные карты для использования в высоких широтах.

Другие европейские математики также описывали подобные приборы примерно в то же время. Независимо от того, кто первым придумал этот инструмент, к началу XVII века он вошёл в стандартную практику мореплавателей и геодезистов. К XVIII веку транспортиры начали появляться в учебниках по геодезии и геометрии.

Транспортиры в современном понимании возникли во второй половине XVIII века, когда такие учёные, как Джесси Рамсден и Георг Фридрих Брандер, усовершенствовали ранее созданные устройства.

В то время предпочтительными материалами для их изготовления были:

В первой половине XX века начали применять олово и целлулоид.

Называться транспортиром (рус.) прибор стал в 1610 году. Термин произошёл от средневекового слова protractor, что означает «переносить», который, в свою очередь, произошел от латинского слова protrahere «тянуть вперёд».

Источник