- Виды измерений. Измерения различают по способу получения и характеру результата, условиям, методам, степени достаточности
- 3. Классификация измерений
- Читайте также
- 5. Основные характеристики измерений
- 9. Средства измерений и их характеристики
- 13. Погрешность измерений
- 16. Погрешности средств измерений
- 18. Выбор средств измерений
- 2 Классификация измерений
- 3. Основные характеристики измерений
- 8. Средства измерений и их характеристики
- 13. Погрешность измерений
- 16. Погрешности средств измерений
- 18. Выбор средств измерений
- 21. Поверка и калибровка средств измерений
- 5.4.6 Оценка неопределенности измерений
- 5.6 Прослеживаемость измерений
- Общие вопросы измерений
- Обработка результатов измерений
- Классификация измерений и средств измерений
Виды измерений. Измерения различают по способу получения и характеру результата, условиям, методам, степени достаточности
Измерения различают по способу получения и характеру результата, условиям, методам, степени достаточности, связи с объектом, числу и точности оценки погрешности.
По способу получения результата измерения делятся на прямые, косвенные, совокупные, совместные и динамические.
Прямые измерения — это непосредственное сравнение физической величины с ее единицей. Например, при определении длины предмета с помощью линейки происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. единицей измерения.
Косвенные измерения отличаются от прямых тем, что искомое значение устанавливают по результатам прямых измерений величин. Например, расстояние – скорость умноженная на время в пути.
Совокупные измерения основываются на решении системы уравнений, составляемых по результатам одновременных измерений нескольких одноименных величин. Для вычисления искомой величины число уравнений должно быть не меньше числа величин.
Совместные измерения — это одновременное измерение двух или нескольких неодноименных физических величин для определения зависимости между ними.
Совокупные и совместные измерения часто применяют при измерениях различных параметров и характеристик в электротехнике.
Динамические измерения связаны с такими величинами, которые изменяют свой размер во времени. Например, измерение мгновенного значения переменного тока или напряжения.
По числу измерений величины различают на однократные и многократные измерения.
Однократные измерения — это когда одно измерение соответствует одной величине, т. е. число измерений равно числу измеряемых величин. Такой вид измерений всегда сопряжен с большими погрешностями, поэтому, как правило, проводят не менее трех однократных измерений и находят конечный результат как среднее арифметическое значение.
Многократные измерения — это когда число измерений превышает число измеряемых величин. В этом случае минимальное число измерений больше трех. Преимуществом многократных измерений является значительное снижение влияния случайных факторов на погрешность измерения (иногда этот вид измерений называют статистическим).
Виды средств измерений (СИ)
Для измерения физической величины применяют технические средства, которые называются средствами измерений.
Средство измерения — это техническое средство, предназначенное для измерения, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени. Средства измерения — это основа метрологического обеспечения, они имеют нормированные погрешности.
К средствам измерений относятся: меры, измерительные преобразователи, приборы, системы и установки, принадлежности.
Мера — это средство измерения, предназначенное для воспроизведения или хранения физической величины заданного размера, например, гири, концевые меры длин и др.
На практике используют однозначные меры, которые воспроизводят величину только одного размера (например, гиря); многозначные меры, когда воспроизводят несколько размеров физической величины (например, длину объекта в миллиметрах или сантиметрах); набор мер (например, набор гирь) и магазин мер, где меры объединены в одно целое с возможностью путем переключения устройств, связанных с возможностью отсчета, соединять меры в нужном сочетании (например, магазин электрических сопротивлений).
К однозначным мерам относятся стандартные образцы и стандартные вещества.
Стандартный образец — это образец вещества (материала), который аттестуется с количественными значениями величин, характеризующими свойства или состав этого вещества (материала).
При пользовании мерами учитывают их номинальное и действительное значение, ее погрешность и разряд. Номинальное значение указывается на мере, действительное — в специальном свидетельстве. Действительное значение меры определяется на основании высокоточного измерения с помощью официального эталона. Разность между действительным и номинальным значениями меры называется погрешностью меры. При аттестации (поверке) тоже могут быть погрешности, поэтому меры подразделяют на разряды (первый, второй и т. д.), а сами меры называются разрядными эталонами (образцовыми измерительными средствами), которые используют для поверки измерительных средств.
Измерительные приборы — средства измерений, предназначенные для переработки сигнала измерительной информации в другие формы, доступные для непосредственного восприятия наблюдателем. Различают приборы прямого действия и приборы сравнения.
Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем градуировку в соответствующих единицах физической величины, например, амперметры, вольтметры и т. п.
Приборы сравнения (компараторы) сравнивают измеряемые величины с величинами, значения которых известны, например, электроизмерительные потенциометры.
Измерительные системы и установки — это совокупность функционально объединенных автоматизированных или автоматических средств измерения, предназначенных для измерения одной или нескольких физических величин объекта измерений.
Измерительные принадлежности — вспомогательные средства, используемые для обеспечения необходимых условий чтобы выполнить измерения с требуемой точностью. Например, психрометр используется при измерении параметра объекта, если оговаривается влажность окружающей среды.
По метрологическому назначению средства измерений делятся на рабочие средства измерения и эталоны.
По способу отсчета измеряемой величины средства измерения, как правило, делятся на показывающие (например, аналоговые и цифровые) и регистрирующие (бумажная или магнитная лента).
Источник
3. Классификация измерений
3. Классификация измерений
Классификация средств измерений может проводиться по следующим критериям.
1. По характеристике точности измерения делятся на равноточные и неравноточные.
Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.
Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.
2. По количеству измерений измерения делятся на однократные и многократные.
Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.
Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.
3. По типу изменения величины измерения делятся на статические и динамические.
Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.
Динамические измерения – это измерения изменяющейся, непостоянной физической величины.
4. По предназначению измерения делятся на технические и метрологические.
Технические измерения – это измерения, выполняемые техническими средствами измерений.
Метрологические измерения – это измерения, выполняемые с использованием эталонов.
5. По способу представления результата измерения делятся на абсолютные и относительные.
Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.
Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.
6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.
Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).
Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.
Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.
Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
5. Основные характеристики измерений
5. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений –
9. Средства измерений и их характеристики
9. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно—измерительные приборы (КИП), и
13. Погрешность измерений
13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения
16. Погрешности средств измерений
16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную
18. Выбор средств измерений
18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в
2 Классификация измерений
2 Классификация измерений Классификация средств измерений может проводиться по следующим критериям.1. По характеристике точности измерения делятся на равноточные и неравноточные.Равноточными измерениями физической величины называется ряд измерений некоторой
3. Основные характеристики измерений
3. Основные характеристики измерений Выделяют следующие основные характеристики измерений:1) метод, которым проводятся измерения;2) принцип измерений;3) погрешность измерений;4) точность измерений;5) правильность измерений;6) достоверность измерений.Метод измерений – это
8. Средства измерений и их характеристики
8. Средства измерений и их характеристики В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и
13. Погрешность измерений
13. Погрешность измерений В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения
16. Погрешности средств измерений
16. Погрешности средств измерений Погрешности средств измерений классифицируются по следующим критериям:1) по способу выражения;2) по характеру проявления;3) по отношению к условиям применения.По способу выражения выделяют абсолютную и относительную погрешности.
18. Выбор средств измерений
18. Выбор средств измерений При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.В случае, если допустимая погрешность не предусмотрена в
21. Поверка и калибровка средств измерений
21. Поверка и калибровка средств измерений Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся
5.4.6 Оценка неопределенности измерений
5.4.6 Оценка неопределенности измерений 5.4.6.1 Калибровочная лаборатория или испытательная лаборатория, осуществляющая свои собственные калибровки, должна иметь и применять процедуру оценки неопределенности измерений при всех калибровках и типах калибровок.5.4.6.2
5.6 Прослеживаемость измерений
5.6 Прослеживаемость измерений 5.6.1 Общие положения Все оборудование, используемое для проведения испытаний и/или калибровок, включая оборудование для дополнительных измерений (например окружающих условий), имеющее существенное влияние на точность и достоверность
Общие вопросы измерений
Общие вопросы измерений Когда измерение становится проблемой Во-первых, когда предполагается измерять какую-то новую величину. Тут есть тонкость — что значит «новая величина»? Физики и инженеры считают, что существует то, что можно измерить. В величину, которую мы
Обработка результатов измерений
Обработка результатов измерений Нет данных без обработки и нет обработки без предварительной информации. Когда мы измеряем тестером напряжение в сети, мы немедленно делаем свой вывод — «нормально» или «низковато для этого времени суток» или «почему так много, тестер
Источник
Классификация измерений и средств измерений
Классификация измерений. Измерения могут быть классифицированы по ряду признаков (рис. 2.1).
По способу получения результатов измерения подразделяют на четыре вида: прямые (измерение, при котором искомое значение физической величины получают непосредственно, например измерение массы на весах); косвенные (измерение, при котором искомое значение величины определяют на основании результатов прямых измерений других физических величин, функционально связанных с искомой вели-
чиной); совокупные (проводят одновременно измерения нескольких однородных величин с определением искомой величины путем решения системы уравнений); совместные (проводят измерения неоднородных физических величин с целью нахождения зависимости между ними).
Рис. 2.1. Классификация измерений
По характеру изменения информации, получаемой в процессе измерений,
различают статические (измерения, которые проводятся при практическом постоянстве измеряемой величины, например измерение размеров земельного участка) и динамические (измерения изменяющейся по размеру величины, например измерение расстояния до уровня земли со снижающегося самолета).
По числу измерений они бывают однократные (измерение, выполненное один раз), многократные (измерение, состоящее из ряда однократных измерений).
По выражению результата различают абсолютные (измерения, основанные на прямых измерениях величин) и относительные (измерение отношения величины к одноименной величине, выполняющей роль единицы).
По характеристике точности измерения бывают: максимально возможной точности (эталонные измерения, где с максимальной возможной точностью воспроизводят единицы физических величин), контрольно-поверочные (измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей заранее заданного значения), технические (погрешность результата определяется характеристиками средств измерений).
Классификация методов измерений. Метод измерений — прием или совокупность приемов (способов) сравнения измеряемой физической величины с ее единицей в соответствии с выбранным (реализованным) принципом измерений.
Методы измерений классифицируют по следующим признакам: по общим приемам получения результатов измерений — прямой метод измерений, косвенный метод измерений; по условиям измерений — контактный метод (чувствительный элемент прибора приводят в контакт с объектом измерения, например измерение темпера-
туры воды термометром) и бесконтактный метод измерений (чувствительный элемент прибора не приводят в контакт с объектом измерения, например измерение расстояния до объекта радиолокатором);
• по способу сравнения измеряемой величины с ее единицей — метод непосредственной оценки (значение величины определяют непосредственно по отсчет- ному устройству средства измерения, например термометра, вольтметра и др.) и метод сравнения с мерой (измеряемую величину сравнивают с величиной, воспроизводимой мерой, например измерение массы на рычажных весах с уравновешиванием гирями).
Классификация средств измерений. Средства измерений (СИ) — это технические средства, предназначенные для измерений и имеющие нормированные метрологические характеристики. СИ классифицируют по двум признакам: конструктивному исполнению и метрологическому назначению.
По конструктивному исполнению СИ подразделяют: на меры физической величины, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы.
Меры физической величины — это средства измерений, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров. Различают меры: однозначные (гиря 1 кг, калибр); многозначные (масштабная линейка, конденсатор переменной емкости); наборы мер (набор гирь, набор калибров). Указанное на мере или приписанное ей значение величины является номинальным значением. Разность между номинальным и действительным значениями называется погрешностью меры, которая служит метрологической характеристикой меры.
К однозначным мерам относят также стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств. СО состава вещества (материала) — стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале). СО свойств веществ (материалов) — стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические И другие свойства.
Новые СО допускают к использованию при условии прохождения ими метрологической аттестации. Метрологическую аттестацию проводят органы метрологической службы. Так, созданные в Центральном институте агрохимического обслуживания сельского хозяйства государственные и отраслевые образцы состава почв аттестованы на содержание макро- и микроэлементов (марганца, кобальта, цинка, меди, молибдена, бора) и другие характеристики (величина pH). Эти стандартные образцы были аттестованы в межлабораторном эксперименте и предназначены для градуировки приборов, поверки СИ, для контроля правильности анализов почв по аттестованным в СО показателям, для аттестации СО предприятий методом сличения.
Измерительный преобразователь (ИП) — СИ, служащее для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований.
Измерительный прибор — СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и ее индикации в форме, наиболее доступной для восприятия. Во многих случаях устройство для индикации имеет шкалу со стрелкой или другим устройством, диа1рамму с пером или
цифроуказатель, с помощью которых может быть произведен отсчет или регистрация значений физической величины. По способу образования показаний измерительные приборы можно разделить на показывающие и регистрирующие.
К показывающим измерительным приборам относят приборы с цифровым отсчетом.
Измерительная установка — совокупность функционально объединенных мер, измерительных приборов и измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.
Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга. Измерительные системы широко используют для автоматизации технологических процессов в различных отраслях промышленности, сельского хозяйства и энергетики. При этом управление процессом осуществляет вычислительно-измерительный комплекс, включающий измерительную систему, функционально связанную с ЭВМ.
По метрологическому назначению все СИ подразделяют на два вида — рабочие средства и эталоны.
Рабочие СИ предназначены для проведения технических измерений. По условиям применения они могут быть лабораторными, используемыми в научных исследованиях, проектировании технических устройств, медицинских измерениях; производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров; полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.
Эталон — выполненное по особой спецификации и официально утвержденное средство измерений, обеспечивающее воспроизведение и хранение единицы физической величины с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений.
Госстандарт располагает самой современной эталонной базой. Она входит в тройку самых совершенных наряду с базами США и Японии. Создаются многофункциональные эталоны, которые воспроизводят на единой конструктивной и метрологической основе не одну, а несколько единиц физических величин или одну единицу, но в широком диапазоне измерений. Характеристика эталонов приведена в разделе 2.5.
Метрологические характеристики средств измерений. Метрологические характеристики средств измерений — это характеристики свойств средств измерений, влияющие на результат измерений и его погрешность. Метрологические характери-
стики, устанавливаемые нормативными документами, называют нормируемыми метрологическими характеристиками.
Все метрологические характеристики СИ можно разделить на две группы: характеристики, определяющие область применения СИ, и характеристики, определяющие качество измерения. К первой группе относят диапазон измерений и порог чувствительности.
Диапазон измерений — область значений величины, в пределах которой нормированы допускаемые пределы погрешности. Значения величины, ограничивающие диапазон измерений снизу или сверху (слева или справа), называют соответственно нижним или верхним пределом измерений.
Порог чувствительности — наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала. Например, если порог чувствительности весов равен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.
К метрологическим характеристикам второй группы относят три главные характеристики, определяющие качество измерений: точность, сходимость и воспроизводимость измерений.
На процесс измерения и получение результата измерения оказывает воздействие множество факторов: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия окружающей среды (температура, влажность, давление и др.), индивидуальные особенности оператора (специалиста, выполняющего измерения) и др.
Точность — качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям, как систематическим, так и случайным.
Погрешности измерений — отклонение результата измерений от истинного значения измеряемой величины. Это теоретическое определение, гак как истинное значение величины неизвестно. При метрологических работах вместо истинного значения используют действительное, за которое принимают обычно показание эталонов.
Погрешности измерений по форме числового выражения подразделяют на абсолютные и относительные. Относительные погрешности определяют отношением абсолютной погрешности к истинному значению измеряемой величины. Абсолютные погрешности выражают в единицах измеряемой величины, относительные — в процентах. Например, масса вагона 50 т измерена с абсолютной погрешностью ±50 кг, а относительная погрешность составляет ±0,1%.
По источникам возникновения погрешности подразделяют на инструментальные (обусловлены свойствами средств измерений), методические (возникают вследствие неправильного выбора модели измеряемого свойства объекта, несовершенства принятого метода измерений, допущений и упрощений при использовании эмпирических зависимостей и др.) и субъективные (погрешности оператора).
По характеру проявления погрешности измерений подразделяют на систематические и случайные.
Систематическая погрешность это погрешность результата измерения, остающаяся постоянной или изменяющейся по определенному закону при повторных измерениях одной и той же величины. Если эта погрешность известна, то ее исключают из результатов разными способами, в частности введением поправок.
Случайная погрешность — это погрешность, которая изменяется случайным образом при повторных измерениях одной и той же величины. В отличие от систематической ее нельзя исключить из результатов измерений. Однако ее влияние может быть уменьшено путем применения специальных способов обработки результатов измерений, основанных на положениях теории вероятности и математической статистики.
Сходимость результатов измерений — характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью (одним и тем же оператором). Для методик выполнения измерений это одна из важнейших характеристик.
Воспроизводимость результатов измерений — качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в разных местах, разными методами и средствами измерений, разными операторами). В процедурах испытаний продукции воспроизводимость — одна из важнейших характеристик.
Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высокоточных измерений, нормируется до десятка и более метрологических характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологические характеристики приводят в эксплуатационной документации на СИ. Учет всех нормируемых характеристик необходим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой — классом точности.
Класс точности СИ — обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупност и отражающим уровень точности СИ данного класса. Присваивают классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки).
Источник