Меню

Как находить относительную погрешность косвенного измерения



Как находить относительную погрешность косвенного измерения

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Читайте также:  Микроскоп для измерения частиц

Источник

Погрешности косвенных измерений

Теперь необходимо рассмотреть вопрос о том, как находить погрешность физической величины U, которая определяется путем косвенных измерений. Общий вид уравнения измерения

где Хj – различные физические величины, которые получены экспериментатором путем прямых измерений, или физические константы, известные с заданной точностью. В формуле они являются аргументами функции.

В практике измерений широко используют два способа расчета погрешности косвенных измерений. Оба способа дают практически одинаковый результат.

Способ 1.Сначала находится абсолютная D, а затем относительная d погрешности. Этот способ рекомендуется для таких уравнений измерения, которые содержат суммы и разности аргументов.

Общая формула для расчета абсолютной погрешности при косвенных измерениях физической величины Y для произвольного вида f функции имеет вид:

(1.5)

где частные производные функции Y=f(Х1, Х2, … , Хn) по аргументу Хj,

общая погрешность прямых измерений величины Хj.

Для нахождения относительной погрешности нужно прежде всего найти среднее значение величины Y. Для этого в уравнение измерения (1.4) надо подставить средние арифметические значения величин Xj.

То есть среднее значение величины Y равно: . Теперь легко найти относительную погрешность: .

Пример: найти погрешность измерения объёма V цилиндра. Высоту h и диаметр D цилиндра считаем определёнными путём прямых измерений, причём пусть количество измерений n=10.

Формула для расчета объёма цилиндра, то есть уравнение измерения имеет вид:

Пусть при Р=0,68;

при Р=0,68.

Тогда, подставляя в формулу (1.5) средние значения, найдём:

Погрешность DV в данном примере зависит, как видно, в основном от погрешности измерения диаметра.

Средний объём равен: , относительная погрешность dV равна:

, или dV=19%.

Окончательный результат после округления:

Способ 2. Этот способ определения погрешности косвенных измерений отличается от первого способа меньшими математическими трудностями, поэтому его чаще используют.

В начале находят относительную погрешность d, и только затем абсолютную D. Особенно удобен этот способ, если уравнение измерения содержит только произведения и отношения аргументов.

Порядок действий можно рассмотреть на том же конкретном примере — определение погрешности при измерении объёма цилиндра

.

Все численные значения входящих в формулу величин сохраним теми же, что и при расчетах по способу 1.

Пусть мм, ; при Р=0,68;

; при Р=0,68.

-погрешность округления числа p (см. рис. 1.1)

При использовании способа 2 следует действовать так:

1) прологарифмировать уравнение измерения (берём натуральный логарифм)

.

найти дифференциалы от левой и правой частей, считая независимыми переменными,

;

2) заменить дифференциал каждой величины на абсолютную погрешность этой же величины, а знаки “минус”, если же они есть перед погрешностями на “плюс”:

Читайте также:  Чем измерить температуру свечения

;

3) казалось бы, что с помощью этой формулы уже можно дать оценку для относительной погрешности , однако это не так. Требуется так оценить погрешность, чтобы доверительная вероятность этой оценки совпадала с доверительными вероятностями оценки погрешностей тех членов, которые стоят в правой части формулы. Для этого, чтобы это условие выполнялось, нужно все члены последней формулы возвести в квадрат, а затем извлечь корень квадратный из обеих частей уравнения:

.

Или в других обозначениях относительная погрешность объёма равна:

,

причём вероятность этой оценки погрешности объёма будет совпадать с вероятностью оценки погрешностей входящих в подкоренное выражение членов:

Сделав вычисления, убедимся, что результат совпадает с оценкой по способу 1:

Теперь, зная относительную погрешность, находим абсолютную:

Окончательный результат после округления:

V = (47 ± 9) мм 3 , dV = 19%, P=0,68.

Контрольные вопросы

1. В чём заключается задача физических измерений?

2. Какие типы измерений различают?

3. Как классифицируют погрешности измерений?

4. Что такое абсолютная и относительная погрешности?

5. Что такое промахи, систематические и случайные погрешности?

6. Как оценить систематическую погрешность?

7. Что такое среднее арифметическое значение измеренной величины?

8. Как оценить величину случайной погрешности, как она связана со средним квадратичным отклонением?

9. Чему равна вероятность обнаружения истинного значение измеренной величины в интервале от Хср — s до Хср + s?

10. Если в качестве оценки для случайной погрешности выбрать величину 2s или 3s, то с какой вероятностью истинное значение будет попадать в определённые этими оценками интервалы?

11. Как суммировать погрешности и когда это нужно делать?

12. Как округлить абсолютную погрешность и среднее значение результата измерения?

13. Какие способы существуют для оценки погрешностей при косвенных измерениях? Как при этом действовать?

14. Что нужно записать в качестве результата измерения? Какие величины указать?

Дата добавления: 2015-02-19 ; просмотров: 3969 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Определение погрешности косвенных измерений

Погрешности измеряемых и табличных величин обуславливают погрешности DХср косвенно определяемой величины, причем наибольший вклад в DХср дают наименее точные величины, имеющие максимальную относительную погрешность d. Поэтому, для повышения точности косвенных измерений, необходимо добиваться равноточности прямых измерений

Правила нахождения погрешностей косвенных измерений:

1. Находят натуральный логарифм от заданной функции

2. Находят полный дифференциал (по всем переменным) от найденного натурального логарифма заданной функции;

3. Заменяют знак дифференциала d на знак абсолютной погрешности D;

4. Заменяют все «минусы», стоящими перед абсолютными погрешностями DА, DВ, DС, … на «плюсы».

В результате получается формула наибольшей относительной погрешности dx косвенно измеренной величины Х:

dx = = j (Aср, Bср, Cср, …, DAср, DBср, DCср, …). (18)

По найденной относительной погрешности dx определяют абсолютную погрешность косвенного измерения:

Результат косвенных измерений записывают в стандартном виде и изображают на числовой оси:

Читайте также:  Измерение это присвоение чисел

Пример :

Найти значения относительной и средней погрешностей физической величины L, определяемой косвенно по формуле:

, (21)

где π, g, t, k, α, β – величины, значения которых измерены или взяты из справочных таблиц и занесены в таблицу результатов измерений и табличных данных (подобную табл.1).

1. Вычисляют среднее значение Lср, подставляя в (21) средние значения из таблицы – πср , gср , tср , kср , αср , βср .

2. Определяют наибольшую относительную погрешность δL :

a). Логарифмируют формулу (21):

(22)

b). Дифференцируют полученное выражение (22):

(23)

c). Заменяют знак дифференциала d на Δ, а «минусы» перед абсолютными погрешностями – на «плюсы», и получают выражение для наибольшей относительной погрешности δL :

δL =

d). Подставляя в полученное выражение средние значения входящих величин и их погрешностей из таблицы результатов измерений, вычисляют δL .

3. Затем вычисляют абсолютную погрешность ΔLср:

Результат записывают в стандартном виде и изображают графически на оси L:

, ед. изм.

2. Правила округления результатов вычисления

Результаты математических действий над приближенными числами округляют до следующего количества значащих цифр:

a) при сложении и вычитании отбрасывают значащие цифры из последних разрядов, если их нет в одном их слагаемых;

b) при умножении и делении сохраняют столько значащих цифр, сколько их в приближенном числе с наименьшим количеством этих цифр;

c) при вычислении значений функций A n , , lgA оставляют столько значащих цифр, сколько их в А.

В промежуточных результатах сохраняют на одну («запасную») цифру больше.

1) 0,374 + 13,1 + 2,065 ≈ 15,5

Отброшены сотые и тысячные доли единиц, отсутствующие в числе 13,1.

2)

Оставлены две значащие цифры по их количеству в числе 7,2.

3) 216 3 ≈ 101·10 5

Оставлены три значащие цифры по их количеству в числе 216.

3. Оформление результатов прямых и косвенных измерений

Результаты измерений записывают в стандартном виде с использованием нормальной формы записи чисел, заменяя незначащие нули соответсвующей степенью десяти.

Обязательно указывается относительная погрешность измерения в процентах.

Округление конечных результатов делается по следующим правилам:

a) в среднем значении абсолютной погрешности DХср оставляют одну не нулевую значащую цифру (или две, если первая цифра – единица);

b) в среднем значении результата измерения Xср оставляют все верные цифры и одну сомнительную (две, если округленная погрешность содержит две значащие цифры).

Сомнительными считаются цифры в последних разрядах Xср , начиная с разряда, использованного для записи абсолютной погрешности DХср..

Для сравнения полученного результата с данными другого опыта или с табличным значением следует показать интервалы сравниваемых величин на числовой оси.

При частичном или полном перекрытии интервалов можно делать вывод о равенстве величин в пределах погрешности измерений.

Источник