Доверительная вероятность и доверительный интервал.
Вероятность того, что истинное значение измеряемой величины лежит внутри некоторого интервала, называется доверительной вероятностью, или коэффициентом надежности,а сам интервал — доверительным интервалом.
Каждой доверительной вероятности соответствует свой доверительный интервал. В частности, доверительной вероятности 0,67 соответствует доверительный интервал от до
. Однако это утверждение справедливо только при достаточно большом числе измерений (более 10), да и вероятность 0,67 не представляется достаточно надежной — примерно в каждой из трех серий измерений y может оказаться за пределами доверительного интервала. Для получения большей уверенности в том, что значение измеряемой величины лежат внутри доверительного интервала, обычно задаются доверительной вероятностью 0,95 — 0,99. Доверительный интервал для заданной доверительной вероятности
с учетом влияния числа измерений n можно найти, умножив стандартное отклонение среднего арифметического
.
на так называемый коэффициент Стьюдента. Коэффициенты Стьюдента для ряда значений
и n приведены в таблице.
Таблица — Коэффициенты Стьюдента
Число измерений n | Доверительная вероятность y | ||
0,67 | 0,90 | 0,95 | 0,99 |
2,0 | 6,3 | 12,7 | 63,7 |
1,3 | 2,4 | 3,2 | 5,8 |
1,2 | 2,1 | 2,8 | 4,6 |
1,2 | 2,0 | 2,6 | 4,0 |
1,1 | 1,8 | 2,3 | 3,3 |
1,0 | 1,7 | 2,0 | 2,6 |
Окончательно, для измеряемой величины y при заданной доверительной вероятности y и числе измерений n получается условие
Величину мы будем называть случайной погрешностьювеличины y.
Пример: см. лекцию №5 – ряд чисел.
При числе измерений – 45 и доверительной вероятности – 0,95 получим, что коэффициент Стьюдента приблизительно равен 2,15. Тогда доверительный интервал для данного ряда измерений равен 62,6.
Промахи(грубая погрешность) — грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями. Их обычно исключают из результатов измерений. Промахи, как правило, вызываются невнимательностью. Они могут возникать также вследствие неисправности прибора.
Источником грубых погрешностей нередко бывают резкие изменения условий измерения и ошибки, допущенные оператором:
— неправильный отсчет по шкале измерительного прибора, происходящий из-за неверного учета цены малых делений шкалы;
— неправильная запись результата наблюдений, значений отдельных мер использованного набора, например, гирь;
— хаотические изменения параметров напряжения, питающего средства измерения, например, его амплитуды или частоты.
Источник
Доверительная вероятность и доверительный
Интервал
Рассмотренные точечные оценки параметров распределения дают оценку в виде числа, наиболее близкого к значению неизвестного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допустить ошибку при выборе параметра. Для практики важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной дове рителъной вероятностью
где q — уровень значимости; хн, хв— нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.
В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Хц в интервал tSx описывается неравенством Чебышева
где Sx — оценка СКО распределения; t — положительное число.
Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6SX. Неравенство Чебышева дает в данном случае 3,16SX. В связи с этим оно не получило широкого распространения.
В метрологической практике используют главным образом кван-тильные оценки доверительного интервала. Под 100P-процентным квантилем хр понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль — это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Например, медиана распределения является 50%-ным квантилем х0,5.
На практике 25- и 75%-ный квантили принято называть сгибами, или квантилями распределения. Между ними заключено 50% всех возможных значений случайной величины, а остальные 50% лежат вне их. Интервал значений случайной величины х между х0 05 и х0 95 охватывает 90% всех ее возможных значений и называется интерквантильным промежутком с 90%-ной вероятностью. Его протяженность равна d0,9= х0,95 — х0,05.
На основании такого подхода вводится понятие квантильных значений погрешности, т.е. значений погрешности с заданной доверительной вероятностью Р — границ интервала неопределенности ± DД = ± (хр — х1-р)/2 = ± dp/2. На его протяженности встречается Р% значений случайной величины (погрешности), a q = (1- Р)% общего их числа остаются за пределами этого интервала.
Для получения интервальной оценки нормально распределенной случайной величины необходимо:
• определить точечную оценку МО х̅ и СКО Sx случайной величины по формулам (6.8) и (6.11) соответственно;
• выбрать доверительную вероятность Р из рекомендуемого ряда значений 0,90; 0,95; 0,99;
• найти верхнюю хв и нижнюю хн границы в соответствии с уравнениями
полученными с учетом (6.1). Значения хн и хв определяются из таблиц значений интегральной функции распределения F(t) или функции Лапласа Ф(1).
Полученный доверительный интервал удовлетворяет условию
(6.13)
где n — число измеренных значений; zp — аргумент функции Лапласа Ф(1), отвечающей вероятности Р/2. В данном случае zp называется квантильным множителем. Половина длины доверительного интервала называется доверительной границей погрешности результата измерений.
Пример 6.1. Произведено 50 измерений постоянного сопротивления. Определить доверительный интервал для МО значения постоянного сопротивления, если закон распределения нормальный с параметрами mx = R = 590 Ом, Sx= 90 Ом при доверительной вероятности Р = 0,9.
Так как гипотеза о нормальности закона распределения не противоречит опытным данным, доверительный интервал определяется по формуле
Отсюда Ф(zр) = 0,45. Из таблицы, приведенной в приложении 1, находим, что zp= 1,65. Следовательно, доверительный интервал запишется в виде
или 590 — 21
Расчет доверительных интервалов для случая, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна, т.е. при малом числе наблюдений п, возможно выполнить с использованием распределения Стьюдента S(t,k). Оно описывает плотность распределения отношения (дроби Стьюдента):
где Q — истинное значение измеряемой величины. Величины х̅, Sx. и Sx̅ вычисляются на основании опытных данных и представляют собой точечные оценки МО, СКО результатов измерений и СКО среднего арифметического значения.
Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале (- tp; + tp)
где k — число степеней свободы, равное (п — 1). Величины tp (называемые в данном случае коэффициентами Стьюдента), рассчитанные с помощью двух последних формул для различных значений доверительной вероятности и числа измерений, табулированы (см. таблицу в приложении 1). Следовательно, с помощью распределения Стьюдента можно найти вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает
В тех случаях, когда распределение случайных погрешностей не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной. Распределение Стьюдента применяют при числе измерений n
Источник
Доверительные вероятности и уровни значимости.
По выборочным характеристикам можно построить интервал, в котором с той или иной вероятностью находится генеральный параметр. Вероятности, признанные достаточными для уверенного суждения о генеральных параметрах на основании выборочных показателей, называют доверительными.
Понятие о доверительных вероятностях вытекает из принципа, что маловероятные события считаются практически невозможными, а события, вероятность которых близка к единице, принимают за почти достоверные. Обычно в качестве доверительных используют вероятности Р1 = 0.95, Р2 = 0.99, Р3 = 0.999. Определенным значениям вероятностей соответствуют уровни значимости, под которыми понимают разность α = 1–Р. Вероятности 0.95 соответствует уровень значимости α1= 0.05 (5%), вероятности 0.99 – α2 = 0.01 (1%), вероятности 0.999 – α3 = 0.001 (0.1%).
Это означает, что при оценке генеральных параметров по выборочным показателям существует риск ошибиться в первом случае 1 раз на 20 испытаний, т.е. в 5% случаев; во втором – 1 раз на 100 испытаний, т.е. в 1% случаев; в третьем – 1 раз на 1000 испытаний, т.е. в 0.1% случаев. Таким образом, уровень значимости обозначает вероятность получения случайного отклонения от установленных с определенной вероятностью результатов. Вероятности, принятые как доверительные, определяют доверительный интервал между ними. На них можно основывать оценку той или иной величины и те границы, в которых она может находиться при разных вероятностях.
Для различных вероятностей доверительные интервалы будут следующими:
— Р1 = 0.95 интервал – 1.96σ до + 1.96σ (рис. 5)
— Р2 = 0.99 интервал – 2.58σ до + 2.58σ
— Р3 = 0.999 интервал – 3.03σ до + 3.03σ
Доверительным вероятностям соответствуют следующие величины нормированных отклонений:
— вероятности Р1 = 0.95 соответствует t1 = 1.96σ
— вероятности Р2 = 0.99 соответствует t2 = 2.58σ
— вероятности Р3 = 0.999 соответствует t3 = 3.03σ
Выбор того или иного порога доверительной вероятности осуществляют исходя из важности события. Уровень значимости в таком случае – эта та вероятность, которой решено пренебрегать в данной исследовании или явлении.
Средняя ошибка
(m), или ошибка репрезентативности.
Выборочные характеристика, как правило, не совпадают по абсолютной величине с соответствующими генеральными параметрами. Величину отклонения выборочного показателя от его генерального параметра называют статистической ошибкой, или ошибкой репрезентативности. Статистические ошибки присущи только выборочным характеристикам, они возникают в процессе отбора вариант из генеральной совокупности.
Средняя ошибка вычисляется по формуле:
(5) ,
где σ – среднее квадратическое отклонение,
n – количество измерений (объем выборки).
Выражается в тех же единицах измерения, что и .
Величина средней ошибки обратно пропорциональна численности выборочной совокупности. Чем больше размеры выборки, тем меньше средняя ошибка, а следовательно, меньше расхождение между значениями признаков в выборочных и генеральной совокупностях.
Среднюю ошибку выборки можно использовать для оценки генеральной средней согласно закону нормального распределения. Так, в пределах ±1 находится 68.3% всех выборочных средних арифметических
, в пределах ±2
– 95.5% всех выборочных средних
, в пределах ±3
– 99.7% всех выборочных средних
.
Поэтому, зная среднюю арифметическую выборки и среднюю ошибку выборки
, можно с определенной степенью вероятности судить о пределах, в которых заключены возможные величины выборочных средних. Средняя арифметическая выборки с учетом средней ошибки записывают с виде
±
, либо
±2
, либо
±3
в зависимости от значений лимитов (Хmax и Хmin). Лимиты при нормальной распределении не должны отклоняться за пределы 3
.
Источник
Доверительный интервал и доверительная вероятность
Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса), выведенный из следующих эмпирических положений.
1) погрешности измерений могут принимать непрерывный ряд значений;
2) при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,
3) чем больше величина случайной погрешности, тем меньше вероятность ее появления.
, (2)
где — функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.
Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.
Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле
, (3)
где — результат i-го измерения;
— среднее арифметическое полученных значений; n – число измерений.
Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений
, а случайная абсолютная погрешность
, то результат измерений запишется в виде
.
Интервал значений от до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку
является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)
Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины
, называемой коэффициентом Стьюдента, дает значение доверительного интервала
в долях средней квадратичной ошибки среднего арифметического
.
. (4)
Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n. С увеличением числа опытов nраспределение Стьюдента стремится к распределению Гаусса.
Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α
Таблица 1.
n | α | n | α | ||||
0,8 | 0,9 | 0,95 | 0,98 | 0,8 | 0,9 | 0,95 | 0,98 |
1,9 | 2,9 | 4,3 | 7,0 | 1,5 | 2,0 | 2,6 | 3,4 |
1,6 | 2,4 | 3,2 | 4,5 | 1,4 | 1,9 | 2,4 | 3,1 |
1,5 | 2,1 | 2,8 | 3,7 | 1,4 | 1,9 | 2,4 | 3,9 |
Пользуясь данными таблицы, можно:
1) определить доверительный интервал, задаваясь определенной вероятностью;
2) выбрать доверительный интервал и определить доверительную вероятность.
При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле
. (5)
Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.
Источник