Как найти относительную погрешность прямого измерения

Как найти относительную погрешность прямого измерения

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Источник

Относительная погрешность

Определение относительной погрешности измерений

Относительная погрешность измерений – это отношение абсолютной погрешности измерений к истинному значению измеряемой величины, в долях или процентах:

На практике относительную погрешность округляют до двух значащих цифр, выполняя округление с избытком, т.е. всегда увеличивая последнюю значащую цифру на единицу.

Для x = 1, $7 \pm 0,2$ относительная погрешность измерений

$δ = \frac<0,2> <1,7>\cdot 100 \text <%>\approx 11,8 \text <%>\approx 12 \text<%>$ — погрешность достаточно велика.

Чем меньше относительная погрешность измерения, тем оно точнее.

Примеры

Пример 1. Согласно данным эксперимента, проведенного в 1975 году, скорость света равна $c = 299 792 458 \pm 1,2 м/с$. Найдите относительную погрешность измерений в этом эксперименте в долях и процентах.

$$δ = 4,0 \cdot 10^ <-9>\cdot 100 \text <%>\approx (4,0 \cdot 10^ <-7>) \text <%>$$

Пример 2. В результате школьного эксперимента ускорение свободного падения оказалось равным $g = 10,0 \pm 0,1 м/с^2$. Определите относительную погрешность для данного эксперимента, а также относительную погрешность по отношению к табличной величине $g_0 = 9,81 м/с^2$. Что вы можете сказать о систематической ошибке эксперимента?

Для данного эксперимента $δ = \frac<0,1> <10,0>\cdot 100 \text <%>= 1,0 \text <%>$

Относительная погрешность по отношению к табличной величине:

Согласно полученным результатам $9,9 \le g \le 10,1$, табличное значение в этот отрезок не входит. В эксперименте присутствует систематическая ошибка: результаты систематически завышены.

Пример 3. При взвешивании масса слона оказалась равной $M = 3,63 \pm 0,01$ т, а масса муравья $m = 41,2 \pm 0,5$ мг. Какое измерение точнее?

Найдем относительные погрешности измерений:

$$ δ_M = \frac<0,01> <3,63>\cdot 100 \text <%>\approx 0,28 \text <%>$$

$$ δ_m = \frac<0,5> <41,2>\cdot 100 \text <%>\approx 1,21 \text <%>\approx ↑1,3 \text <%>$$

Таким образом, масса слона определена точнее.

Пример 4. Вольтметр измеряет напряжение с относительной погрешностью 0,5%. Найдите границы точного значения величины, если при измерении получено $V_0$ = 5 В.

Абсолютная погрешность измерений данным вольтметром:

$$ \Delta V = V_0 \cdot δ, \Delta V = 5 \cdot 0,005 = 0,025 (В) \approx 0,03(В) $$

Границы точного значения:

$$ V = 5,00 \pm 0,03 (В) или 4,97 \le V \le 5,03 (В) $$

Источник

Определение погрешностей при прямых измерениях

Измерение физических величин и классификация погрешностей

В физическом практикуме каждая из лабораторных работ посвящается воспроизведению опытов для наблюдения физических явлений или законов, изучению различных свойств веществ. Свойства тел или физических явлений, которые количественно могут отличаться у разных тел или изменяться у одного и того же тела, называются физическими величинами. К таким величинам относятся масса, объем, длина, температура, давление, скорость, ускорение, плотность и т.д.

Как правило, при выполнении лабораторных работ необходимо производить измерения той или иной физической величины, характеризующей рассматриваемое явление, закон или свойство изучаемого вещества. Измерить какую-либо физическую величину — это значит узнать, сколько раз заключается в ней однородная величина, принятая за единицу измерения. Измерения разделяют на прямые и косвенные.

При прямых измерениях определяемая величина сравнивается с единицей измерения непосредственно или при помощи измерительного прибора проградуированного в соответствующих единицах. Примерами прямых измерений является измерение длины линейкой или штангенциркулем, измерение времени секундомером, величины электрического тока амперметром, напряжения вольтметром, сопротивления омметром, температуры термометром и т.д.

При косвенных измерениях определяемая величина находится из результатов прямых измерений тех величин, которые связаны с определяемой величиной функциональной зависимостью. Например, чувствительность осциллографа определяется выражением:

,

где l — длина светящейся линии на экране осциллографа, расположенная вдоль оси X или Y; Uэф — эффективное напряжение, подаваемое на соответствующий вход (X или Y) прибора. Параметры l и Uэф можно определить прямыми измерениями, используя линейку и вольтметр, а величину S — из указанной выше функциональной зависимости.

Физическую величину невозможно измерить абсолютно точно, поскольку любое измерение сопровождается той или иной ошибкой(погрешностью).Погрешности измерений бывают систематические и случайные.

Погрешность, сохраняющая величину и знак от опыта к опыту, называется систематической. Систематическая погрешность может оставаться постоянной и закономерно изменяться как при изменении одной и той же величины, так и при изменении в некотором диапазоне, например, в диапазоне измерения прибора. По происхождению систематические погрешности можно классифицировать на следующие:

1. Методические (теоретические) погрешности, связанные с недостаточно точным обоснованием самого метода измерения, с допущениями при выводе формул, с зависимостью измеряемой величины от параметров приборов и т.д.

2.Инструментальные погрешности, связанные с конструктивными недостатками прибора, неисправностью или неправильной градуировкой прибора и т.д.

3. Погрешности установки, возникающие из-за неправильной установки прибора и неточной установки стрелки на ноль.

4. Личные погрешности(субъективные), проявляющиеся из-за индивидуальных особенностей экспериментатора при отсчете измеряемой величины (из-за неправильного расположения экспериментатора относительно прибора, неточность интерполяции показания в пределах одного деления и т.д.).

5. Погрешности, вызываемые изменением внешних условий (изменение температурных, магнитных и электрических полей, частоты, напряжения, давления, влажности, ускорения и т.д.).

Погрешность, которая непредсказуемым образом изменяет свою величину и знак от опыта к опыту, называется случайной. Случайная погрешность является результатом действия большого числа случайных причин на каждое измерение, величина и природа которой остается неопределенной. Случайный характер этих погрешностей проявляется в том, что при многократном повторении опыта в одинаковых условиях и с одинаковой тщательностью получаются различные результаты. Погрешности, возникающие в результате неправильного отсчета по шкале прибора, неверной записи отсчетов, грубых нарушений условий измерения и т.д., называются промахами.Измерения, содержащие промахи, не учитываются. В подобных случаях делается повторное (контрольное) измерение.

В основе теории определения погрешностей лежат два положения, подтвержденные опытом.

1. При большом числе измерений физической величины случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто.

2. Погрешности большие по абсолютной величине встречаются реже, чем малые, т.е. вероятность появления погрешности уменьшается с ростом величины погрешности.

Допустим, что мы произвели n прямых измерений некоторой физической величины А, истинное значение которой нам неизвестно. Обозначим через А1, А2, А3, . . . Аn результаты отдельных измерений. Абсолютнуюпогрешность DАn n-го измерения, представляющую собой разность между истинным значением А и измеряемой величиной Аn, можно записать следующим образом: DАn=А-Аn, тогда результаты отдельных измерений можно представить в виде:

, , …, (1)

Абсолютные погрешности DА1, DА2, . . . DАn могут принимать как положительные, так и отрицательные значения. Суммируя левую и почленно правую стороны равенства (1), получаем:

(2)

Разделив обе стороны равенства (2) на число n и учитывая,что среднеарифметическая величина:

(3)

(4)

после перестановки членов получим:

(4)

Так как в серии большого числа измерений всякой положительной погрешности можно сопоставить равную ей по абсолютной величине отрицательную погрешность, то на основании положения 1, указанного выше,

(5)

(5)

Тогда из уравнения (4) следует:

при (6)

(6a)

При ограниченном числе измерений (n¹¥) среднеарифметическое значение будет отличаться от истинного значения А, т.е. равенство (6) будет приближенным:

(6а)

(7)

В этом случае необходимо оценить величину этого расхождения. Как показывают соответствующие расчеты, вместо приближенного равенства (6а), можно записать:

(7)

(7a)

или

(7а)

где определяется выражением (3), а для определения используется формула:

(8)

Отношения называются относительными ошибками отдельных измерений.

Отношение средней абсолютной ошибки результата к среднему значению дает среднюю относительную ошибку измерений

(9)

Так как относительную ошибку принято выражать в процентах, то

(9а)

(9a)

Из уравнения (7) и (7а) видно, что знаки “+” и ”-” показывают не наличие двух истинных значений измеряемой величины, а интервал, в котором находится единственное значение этой величины.

Более точную формулу для вычисления абсолютной ошибки результата дает теория вероятностей:

(10)

Абсолютная ошибка, определяемая уравнением (10), называется наиболее вероятной ошибкой.

Окончательное значение измеряемой физической величины в этом случае записывается следующим образом:

(11)

Окончательный результат (11) можно записать с учетом среднеквадратичной ошибки, которая определяется уравнением:

(12)

Пример.Определить абсолютную и относительную погрешность диаметра свинцового шарика по пяти измерениям, результаты которых указаны ниже.

d,мм 1,47 1,46 1,43 1,45 1,44

Среднее из пяти найденных значений:

Абсолютные ошибки отдельных измерений:

Средняя абсолютная ошибка результатов:

Результат измерений:

Аналогично можно произвести обработку результата измерений с наиболее вероятной ошибкой или с учетом средней квадратичной ошибки, используя формулу (10) или (12).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Погрешности измерений, представление результатов эксперимента

п.1. Шкала измерительного прибора

Примеры шкал различных приборов:


Манометр – прибор для измерения давления, круговая шкала

Вольтметр – прибор для измерения напряжения, дуговая шкала

Индикатор громкости звука, линейная шкала

п.2. Цена деления

Пример определения цены деления:

Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале: a = 5 c
b = 10 c Между ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: \begin \triangle=\frac\\ \triangle=\frac<10-5><24+1>=\frac15=0,2\ c \end

п.3. Виды измерений

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Определяется субъективным фактором, ошибками экспериментатора.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><1+1>=0,5\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,5><2>=0,25\ \text <см>\end Истинное значение: \(L_0=4\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,00\pm 0,25)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,25><4,00>\cdot 100\text<%>=6,25\text<%>\approx 6,3\text <%>$$
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><9+1>=0,1\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,1><2>=0,05\ \text <см>\end Истинное значение: \(L_0=4,15\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,15\pm 0,05)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,05><4,15>\cdot 100\text<%>\approx 1,2\text <%>$$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: \begin m_0=\frac<99,8+101,2+100,3><3>=\frac<301,3><3>\approx 100,4\ \text <г>\end Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности \(m_0\) и измерения. \begin \triangle_1=|100,4-99,8|=0,6\\ \triangle_2=|100,4-101,2|=0,8\\ \triangle_3=|100,4-100,3|=0,1 \end Находим среднее абсолютное отклонение: \begin \triangle_=\frac<0,6+0,8+0,1><3>=\frac<1,5><3>=0,5\ \text <(г)>\end Мы видим, что полученное значение \(\triangle_\) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: \begin \triangle m=max\left\<\triangle_; d\right\>=max\left\<0,5; 0,05\right\>\ \text <(г)>\end Записываем результат: \begin m=m_0\pm\triangle m\\ m=(100,4\pm 0,5)\ \text <(г)>\end Относительная погрешность (с двумя значащими цифрами): \begin \delta_m=\frac<0,5><100,4>\cdot 100\text<%>\approx 0,050\text <%>\end

п.6. Представление результатов эксперимента

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n \(\triangle=\frac\), мл
1 20 40 4 \(\frac<40-20><4+1>=4\)
2 100 200 4 \(\frac<200-100><4+1>=20\)
3 15 30 4 \(\frac<30-15><4+1>=3\)
4 200 400 4 \(\frac<400-200><4+1>=40\)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем \(V_0\), мл Абсолютная погрешность
\(\triangle V=\frac<\triangle><2>\), мл
Относительная погрешность
\(\delta_V=\frac<\triangle V>\cdot 100\text<%>\)
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0\pm 0,1)\ \text<м>,\ \ x_2=(4,0\pm 0,03)\ \text <м>$$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: \begin \delta_1=\frac<0,1><4,0>\cdot 100\text<%>=2,5\text<%>\\ \delta_2=\frac<0,03><4,0>\cdot 100\text<%>=0,75\text <%>\end Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: \(\delta_2\lt \delta_1\), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ \triangle v_1=\frac<10><2>=5\ (\text<км/ч>),\ \ \triangle v_2=\frac<1><2>=0,5\ (\text<км/ч>) $$ Показания каждого из спидометров: $$ v_1=(54\pm 5)\ \text<км/ч>,\ \ v_2=(72\pm 0,5)\ \text <км/ч>$$ Скорость сближения равна сумме скоростей: $$ v_0=v_<10>+v_<20>,\ \ v_0=54+72=125\ \text <км/ч>$$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ \triangle v=\triangle v_1+\triangle v_2,\ \ \triangle v=5+0,5=5,5\ \text <км/ч>$$ Скорость сближения с учетом погрешности равна: $$ v=(126,0\pm 5,5)\ \text <км/ч>$$ Относительная погрешность: $$ \delta_v=\frac<5,5><126,0>\cdot 100\text<%>\approx 4,4\text <%>$$ Ответ: \(v=(126,0\pm 5,5)\ \text<км/ч>,\ \ \delta_v\approx 4,4\text<%>\)

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки \(d=\frac<0,1><2>=0,05\ \text<см>\)
Результаты прямых измерений длины и ширины: $$ a=(90,20\pm 0,05)\ \text<см>,\ \ b=(60,10\pm 0,05)\ \text <см>$$ Относительные погрешности (не забываем про правила округления): \begin \delta_1=\frac<0,05><90,20>\cdot 100\text<%>\approx 0,0554\text<%>\approx \uparrow 0,056\text<%>\\ \delta_2=\frac<0,05><60,10>\cdot 100\text<%>\approx 0,0832\text<%>\approx \uparrow 0,084\text <%>\end Площадь столешницы: $$ S=ab,\ \ S=90,2\cdot 60,1 = 5421,01\ \text<см>^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ \delta_S=\delta_a+\delta_b=0,056\text<%>+0,084\text<%>=0,140\text<%>=0,14\text <%>$$ Абсолютная погрешность: \begin \triangle S=S\cdot \delta_S=5421,01\cdot 0,0014=7,59\approx 7,6\ \text<см>^2\\ S=(5421,0\pm 7,6)\ \text<см>^2 \end Ответ: \(S=(5421,0\pm 7,6)\ \text<см>^2,\ \ \delta_S\approx 0,14\text<%>\)

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector