Меню

Как называют прибор для измерения давления вакуума



Приборы для измерения давления. Виды и работа. Применение

Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м 2 . Применяют приборы для измерения давления.

Виды давления
  • Атмосферное давление образуется атмосферой Земли.
  • Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.
  • Избыточное давление – это величина давления, превосходящая значение атмосферного давления.
  • Абсолютное давление определяется от величины абсолютного нуля (вакуума).
Виды и работа

Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление. Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.

Барометры

Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.

Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.

Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.

Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.

Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.

Жидкостные манометры

В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы для измерения давления чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).

Рис-1

Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.

На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера. Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.

При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.

Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.

Рис-2

Преимуществами таких приборов является дистанционная передача и их регистрация значений.

Деформационные манометры

В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления.

Деформационные манометры делятся на:
  • Пружинные.
  • Сильфонные.
  • Мембранные.

Рис-3

Пружинные манометры

В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).

Мембранные манометры

В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма. Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).

Сильфонные манометры

В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.

Читайте также:  Приборы с измерением бокового давления

Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров. Прибор, измеряющий избыточное давление, является напоромером, для измерения избыточного давления и вакуума служат тягонапоромеры.

Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.

Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.

Дифференциально-трансформаторный преобразователь

Рис-4

Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.

Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).

Магнитомодуляционные приборы для измерения давления

В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.

Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.

Тензометрические манометры

Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.

Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.

Электроконтактные манометры

В схемах сигнализации, системах авторегулирования технологических процессов, приборах тепловой защиты популярными стали электроконтактные манометры. На рисунке изображена схема и вид прибора.

Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.

При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).

Классы точности
Измерительные манометры разделяют на два класса:

Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.

Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.

Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.

Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.

Применение манометров

Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.

Источник

Измерение давления и вакуума.

Измерение давлений широко используется в теплоэнергетике. Давление характеризует работоспособность отдельных агрегатов. а также ход термо и газодинамических процессов в энергетических установках. С помощью измерения давления определяется скорость и расход жидкости и газа в различных процессах.

По своему назначению приборы для измерения давления и вакуума делятся на:

— манометры избыточного или абсолютного давления;

— барометры — для измерения абсолютного давления атмосферного воздуха;

— вакуумметры — для измерения разности между барометрическим и абсолютным давлениями, когда значение абсолютного давления меньше

— мановакууметры — для измерения как избыточного давления, так и вакууметрического давления;

— дифференциальные манометры — для измерения разности давле­ний, когда ни одно из них не равно атмосферному;

Читайте также:  Методика измерения вертикальных углов

— микроманометры — для измерения малых разностей давлений.

По принципу действия средства измерения давления делят на сле­дующие группы:

— жидкостные приборы давления, у которых измеряемое давление уравновешивается давлением столба жидкости;

— грузопоршневые приборы, у которых измеряемое давление урав­новешивается массой груза и поршня;

— деформационные приборы, действие которых основано на исполь­зовании зависимости упругой деформации и усилия, создаваемого чувстви­тельным элементом, от давления;

— электрические приборы, действие которых основано на свойствах отдельных веществ изменять свои электрические параметры под действием давления;

-электроразрядные приборы, у которых используется зависимость ионного тока от давления;

— теплоэлектрические приборы, действие которых основано на за­висимости теплопроводности газового слоя от давления.

Для целей автоматизации экспериментальных исследований про­мышленностью выпускаются соответствующие измерительные средства и устройства на базе унифицированных электрических преобразователей давления и упругих чувствительных элементов.

За единицу давления в СИ принят 1 Па=1 Н/м 2 .

1мм рт. ст. = 133,32 Па; 1кг/м = 1мм вод. ст.= 9,81 Па.

6.1.1 Жидкостные и деформационные приборы давления.

По конструктивному признаку жидкостные манометры подразделяются на:

-U- образные манометры;

Эти манометры используются для определения избыточного давления воздуха и неагрессивных газов до 0,1 МПа, для измерения разности давлений неагрессивных газов в пределах от 0,1 МПа до 7 кПа, а также неагрессивных жидкостей и паров в пределах от 0,1 МПа до 0,4 кПа.

Жидкостные U-образные манометры изготавливаются из стеклянных трубок диаметром 6. 10 мм, заполненных наполовину рабочей жидкостью — ртутью, водой, спиртом, маслом.

Разность давлений DР в манометре определяется выражением

где р — плотность жидкости; g -ускорение свободного падения; h — высота

Погрешность отсчета давления по шкале U-образного и чашечного

манометров составляет 2 мм и 1 мм, соответственно.

Действие деформационных приборов давленияосновано на зависимости

деформации или изгибающего момента упругих чувствительных элементов от давления. Давление определяется в основном линейным перемещением

Деформационные приборы давления используют для измерения давления

в очень широком диапазоне измерений — от 50 Па до 1000 МПа. Их изготавливают в виде манометров избыточного давления, манометров абсолютного давления, вакуумметров, дифференциальных манометров.

Деформационные приборы давления можно разделить на две

1. Приборы давления прямого действия, у которых перемещение

упругого элемента, обусловленное воздействием измеряемого давления или

разности давлений, преобразуется в перемещение отсчетного устройства

для показания или показания и записи измеряемой величины, или измерения

и сигнализации, или только сигнализации об отклонении измеряемого

давления от заданного значения.

Эти приборы обладают простотой устройства и эксплуатации, имеют

невысокую стоимость и поэтому нашли широкое распространение в различных

Манометры и вакуумметры имеют чувствительные элементы, выполненные в форме сильфонов и одновитковых трубчатых пружин.

2. Приборы давления, имеющие передающие преобразователи с

унифицированным выходным сигналом. Выходными сигналами могут

быть сигналы переменного тока, постоянного тока или пневматические

сигналы. Эти приборы, именуемые датчиками,выпускаются как с отсчет-

ным устройством, так и без него. Датчики предназначены для работы с

взаимозаменяемыми вторичными показывающими приборами, самопишущими

приборами, регуляторами и информационно-измерительными системами.

Чувствительными элементами датчиков давления являются пластины,

мембраны, сильфоны и трубчатые пружины.

Приборы давления с сильфонамипредназначены для измерения и

записи вакуумметрических и небольших избыточных давлений до 0,4 МПа.

Выпускаются приборы классов точности 1,5 и 2,5.

Приборы давления с трубчатой пружинойиспользуются для измерения

вакуумметрического давления, а также избыточного давления от 0,1

до 1000 МПа. Они выпускаются в виде рабочих и образцовых приборов. В

свою очередь рабочие приборы бывают повышенной точности, контрольные

Приборы повышенной точностиизготавливаются классами точности

Контрольные приборыизготавливаются классом точности 0,6.

Технические приборыизготавливаются классами точности 1; 1,6;

Образцовые приборыимеют классы точности 0,16; 0,25 и 0,4.

6.1.2 Приборы для измерения вакуума.

Измерение вакуума, т.е. измерение давления разреженного газа, про­изводится с помощью вакуумметров. По принципу действия вакууммет­ры разделяются на следующие типы:

1. Жидкостные вакуумметры, включающие:

Читайте также:  Как измерили температуру ядра земли

— U-образные приборы давления;

— компрессионные приборы давления.

2. Деформационные вакуумметры, включающие:

3. Теплоэлектрические вакуумметры, включающие:

4. Электроразрядные вакуумметры, включающие:

— магнетронные ионизационные вакуумметры;

— магнитные электроразрядные вакуумметры.

Жидкостные U-образные приборы давления используются для изме­рения давления от 0,1 МПа до 500 Па.

Теплоэлектрические вакуумметры применяются для измерения дав­ления в диапазоне от 70 до 0,13 Па. Их действие основано на зависимости теплопроводности ограниченного слоя разреженного газа от давления. Чувствительным элементом теплоэлектрического вакуумметра является тонкая металлическая нить накала, размещаемая в стеклянном баллоне, ку­да подводится измеряемое давление. Нить нагревается электрическим то­ком и охлаждается разреженной средой. Выделяемая нитью джоулева теп­лота частично отводится в результате теплопроводности материала через концы нити, частично рассеивается ее поверхностью в результа­те радиационного теплообмена, частично отводится газом. Тепловой поток отводимый газом прямо пропор­ционален давлению С уменьшением давления Р тепловой поток, отводимый газом, уменьшается и при Р 6 Па. Их действие основано на ис­пользовании зависимости ионного тока от давления. Достоинством электроразрядного вакуумметра является простая электрическая схема включения вакуумметрической лампы. Недостатками магнитного электроразрядного вакуумметра являются сравнительно узкий диапазон измеряемого давления и линейность разрядного тока и давления не во всем диапазоне измеряемо­го давления.

6.2. Измерение скорости и расхода жидкости и газа.

Для измерения скорости наиболее распространены два метода:

Пневмометрический метод измерения скоростей широко распро­странен в исследовательской практике ввиду своей простоты и доступно­сти.

Если скорости течения потока газа или жидкости достаточно малы, т.е. число Маха М

Термоанемометрический метод прибор,основан на зависимости между электрическим сопротивлением или температурой нагретого проводника, помещенного в поток, и скоростью его обтекания.

Чувствительным элементом термоанемометра является проволочный

или пленочный датчик, нагреваемый электрическим током. В проволочном датчике чувствительным элементом является нагреваемая тонкая проволока (нить), соединенная через поддерживающие стойки и корпус датчика с его выводами. Проволочный датчик используется при измерениях в изотермических условиях, а также при температурах потока до 500С. Пленочные датчики применяются в газовых потоках, имеющих температуру более 500С, и, как правило, являются охлаждаемыми. Материалом нити в проволочном датчике является вольфрам, платина или платиновые сплавы (платинородий, платиноиридий). Диаметр нити составляет 1-15 мкм, а длина между стойками 0,5-5 мм. Для обеспечения разности температур между потоком и нитью производится ее нагрев за счет пропускания электрического тока.

Существуют 2 основных режима работы термоанемометра:

— режим постоянного тока;

— режим постоянной температуры.

Режим постоянного тока характеризуется постоянным значением силы тока, протекающего через нить. При воздействии потока на нить происходит изменение температуры нити, вследствие изменения коэффициента теплоотдачи, что приводит к изменению ее сопротивления.

Режим постоянной температуры характеризуется постоянным значением температуры нити, обеспечиваемым изменением силы тока. В этом случае тепловая инерция нити очень мала, что обеспечивает более точные измерения по сравнению с режимом постоянного тока.

Для измерения расхода вещества, т.е. количества вещества, протекающего через сечение канала в единицу времени, служат следующие приборы:

— счетчики количества текучей среды.

Для измерения расхода жидкости или газа бразователя на­зывают наибольшую разность в показаниях прибора или наибольшую раз­ность между выходными сигналами преобразователя, соответствующими одному и тому же значению входного сигнала, но полученными в одном случае при плавном увеличении, а в другом — при плавном уменьшении значения измеряемой величины.

В исследовательской практике очень часто возникает необходимость в измерении величин, меняющихся во времени, т.е.в динамических усло­виях. Результаты таких измерений искажаются дополнительной погрешно­стью, обусловленной динамичностью условий. Эта составляющая погреш­ности называется динамической погрешностью и представляет собой разность между погрешностью средств измерений в динамических услови­ях и соответствующей погрешностью в статических условиях. Причиной появления динамической погрешности является инертность средств изме­рения. Вследствие этой инертности происходит запаздывание в показаниях при регистрации мгновенных значений измеряемой величины.

| следующая лекция ==>
Техника измерений. Виды, методы и средства измерений. |

Дата добавления: 2017-01-29 ; просмотров: 4985 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник