Десятичные дроби
О чем эта статья:
Понятие десятичной дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства десятичных дробей
Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:
- 0,600 = 0,6
- 21,10200000 = 21,102
Основные свойства |
---|
|
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
- Целая часть десятичной дроби равна целой части смешанной дроби. Если числитель меньше знаменателя, то целая часть равна нулю.
- Дробная часть десятичной дроби содержит те же цифры, что и числитель этой же дроби в обыкновенном виде.
- Количество цифр после запятой зависит от количества нулей в знаменателе обыкновенной дроби. То есть 1 цифра — делитель 10, 4 цифры — делитель 10000.
Как записать десятичную дробь
Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.
Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.
- Знаменатель равен 10 — это один ноль.
- Отсчитываем справа налево в числителе дробной части один знак и ставим запятую.
- В полученной десятичной дроби цифра 1 — целая часть, цифра 6 — дробная часть.
Пример 2. Перевести 37/1000 в десятичную дробь.
- Знаменатель равен 1000 — это три нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Так как в числителе только две цифры, то на пустующие места пишем нули.
- В полученной десятичной дроби цифра 0 — целая часть, 037 — дробная часть.
Ответ: 37/1000 = 0,037.
Приходите решать увлекательные задачки с красочными героями и в интерактивном формате. Запишите вашего ребенка на бесплатный вводный урок в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.
Как читать десятичную дробь
Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:
Сколько цифр после запятой? | Читается, как |
---|---|
одна цифра — десятых; | 1,3 — одна целая, три десятых; |
две цифры — сотых | 2,22 — две целых, двадцать две сотых; |
три цифры — тысячных; | 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных; |
четыре цифры — десятитысячных; | 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных; |
и т.д. |
Сохраняй наглядную картинку, чтобы быстрее запомнить.
Преобразование десятичных дробей
Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!
Как перевести десятичную дробь в проценты
Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.
Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.
А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:
0,15 = 0,15 · 100% = 15%.
Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.
2/5 = 0,4
0,4 · 100% = 40%
8/25 = 0,32
0,32 · 100% = 32%
Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:
Преобразование десятичных дробей
Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.
Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).
Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!
Пример 1. Перевести 5,4 в смешанное число.
- Читаем вслух: пять целых четыре десятых. «Четыре десятых» подсказывают, что в числителе будет 4, а в знаменателе — 10. В смешанном виде эта дробь выглядит так: 5 4/10.
- А теперь сократим числитель и знаменатель на два (потому что можно) и получим: 5 2/5.
Пример 2. Перевести 4,005 в смешанное число.
- Читаем вслух: четыре целых пять тысячных. Значит 5 — идет в числитель, а 1000 — в знаменатель. В смешанном виде получается так: 4 5/1000. После сокращения: 4 1/200.
Ответ: 4,005 = 4 1/200.
Пример 3. Перевести 5,60 в смешанное число.
- Читаем вслух: пять целых шестьдесят сотых. Отправляем 60 в числитель, а 100 — в знаменатель. В смешанном виде дробь такая: 5 60/100.
- Сократим дробную часть на 10 и получим 5 6/10. Или можно вспомнить про свойство десятичной дроби и просто отбросить нули в числителе и знаменателе.
Ответ: 5,60 = 5 6/10.
Как перевести десятичную дробь в обыкновенную
Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:
- Перепишем исходную дробь в новый вид: в числитель поставим исходную десятичную дробь, а в знаменатель — единицу. Например:
- 0,35 = 0,35/1
- 2,34 = 2,34/1
- Умножим числитель и знаменатель на 10 столько раз, чтобы в числителе исчезла запятая. При этом после каждого умножения запятая в числителе сдвигается вправо на один знак, а у знаменателя соответственно добавляются нули. На примере легче:
- 0,35 = 0,35/1 = 3,5/10 = 35/100
- 2,34 = 2,34/1 = 23,4/10 = 234/100
- А теперь сокращаем — то есть делим числитель и знаменатель на кратные им числа:
- 0,35 = 35/100, делим числитель и знаменатель на пять, получаем 6/20, еще раз делим на 2, получаем итоговый ответ 3/10.
- 2,34 = 234/100 = 117/50 = 2 17/50.
Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!
Действия с десятичными дробями
С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.
Как разделить десятичную дробь на натуральное число
- Разделить целую часть десятичной дроби на это число.
- Поставить запятую в частном и продолжить вычисление, как при обычном делении.
Пример 1. Разделить 4,8 на 2.
- Записать деление уголком.
- Разделить целую часть на два. Записать полученный результат в частное и поставить запятую.
- Умножить частное на делитель, записать, посмотреть на остаток от деления. Но мы еще не закончили, поэтому остаток «ноль» не записываем. Сносим 8 и делим её на 2.
- Делим еще раз. Записываем полученную 4 в частном и умножаем её на делитель:
Ответ: 4,8 : 2 = 2,4.
Пример 2. Разделить 183,06 на 45.
- Записать деление уголком.
- Разделить целую часть 183 на 45. Записать результат, поставить запятую в частном.
- Записать результат разницы 183 и 180. Снести 0. Записать 0 в частное, чтобы снести 6.
- Записать результат разницы 306 и 270. 36 не делится на 45, поэтому добавляем ноль и производим разницу.
Ответ: 183,06 : 45 = 4,068.
Как разделить десятичную дробь на обыкновенную
Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.
Пример 1. Разделить 0,25 на 3/4.
- Записать 0,25 в виде обыкновенной дроби: 0,25 = 25/100.
- Разделить дробь по правилам:
Ответ: 0,25 : 3/4 = 1/3.
Пример 2. Разделить 2,55 на 1 1/3.
- Записать 2,55 в виде обыкновенной дроби: 2,55 = 255/1000.
- Записать 1 1/3 в виде обыкновенной дроби: 1 1/3 = 4/3.
- Разделить дробь по правилам:
Ответ: 2,55 : 1 1/3 = 1 73/80.
Как умножить десятичную дробь на обыкновенную
Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.
Пример 1. Умножить 2/5 на 0,8.
- Записать 0,8 в виде обыкновенной дроби: 0,8 = 8/10.
- Умножаем по правилам: 2/5 ∗ 8/10 = 2/5 ∗ 4/5 = 8/25 = 0,32.
Ответ: 2/5 ∗ 0,8 = 0,32.
Пример 2. Умножить 0,28 на 6 1/4.
- Записать 6 1/4 в виде десятичной дроби: 6 1/4 = 6,25.
- Умножаем по правилам: 0,28 ∗ 6,25 = 0,8.
Ответ: 0,28 ∗ 6 1/4 = 0,8.
А если нужно решить примеры с десятичными дробями быстро — поможет онлайн-калькулятор. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:
Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в детскую школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.
Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.
Источник
Урок 41 Бесплатно Сравнение десятичных дробей
Сравнение чисел- это математическая операция, с помощью которой можно установить равенство или неравенство чисел, если числа не равны, то с помощью данной операции можно выяснить какое число больше, а какое меньше.
Сравнивать можно любые числа в том числе и десятичные дроби.
Десятичные дроби будем сравнивать с помощью их десятичной записи.
Сегодня на уроке научимся определять разрядность десятичной дроби, разберем правила сравнения десятичных дробей.
Определим, где на координатном луче расположена десятичная дробь.
Разряды десятичных дробей
В десятичных дробях, так же, как и в натуральных числах, значение каждой цифры зависит от ее места (позиции) в числе.
Каждый знак в записи десятичной дроби означает сколько единиц соответствующего разряда содержится в ней, а единица каждого разряда содержит 10 единиц предыдущего разряда.
В десятичной дроби до запятой (в целой части десятичной дроби) название разрядов точно такое же, как в натуральных числах: единицы, десятки, сотни, тысячи и т.д.
Каждая цифра десятичной дроби, стоящая после десятичной запятой (в дробной части) тоже имеют свое название и значение.
Номер разряда в целой части отсчитывается влево от запятой, а в дробной части- вправо от запятой.
Разряды в десятичных дробях отличаются по старшинству: старшинство убывает слева на право.
Самым старшим (высшим) разрядом считается самая левая цифра в числе, самым младшим разрядом (низшим) разрядом является самая правая цифра в числе.
Цифры, стоящие после десятичной запятой, называют десятичными знаками.
Итак, если после десятичной запятой стоит один знак- это десятые, если после запятой два знака- это сотые, если три десятичных знака- это тысячные и т.д.
Таким образом, первая цифра после запятой обозначает разряд десятых (\(\mathbf<\frac<1> <10>= 0,1>\)), далее идет разряд сотых (\(\mathbf<\frac<1> <100>= 0,01>\)), затем разряд тысячных (\(\mathbf<\frac<1> <1000>= 0,001>\)) и т.д.
Давайте составим таблицу разрядов десятичных дробей.
На основе вышеизложенной информации рассмотрим поясняющий пример.
Составим таблицу разрядов для числа 175,248.
Из таблицы видно, что заданное число 175,248 содержит 1 сотню, 7 десятков, 5 единиц, 2 десятых, 4 сотых, 8 тысячных.
Данная десятичная дробь читается так: «сто семьдесят пять целых двести сорок восемь тысячных».
Наверное, вы заметили, что в нашем примере, в таблице, в разряде десятитысячных мы поставили нуль, и в наших действиях нет никакой ошибки.
Справа от запятой после самой последней цифры, неравной нулю, можно приписывать сколько угодно нулей, от этого значение десятичной дроби не изменится.
75,248 = 75,2480 = 75,24800 = …
Верно и обратное действие: если в конце десятичной дроби, после самой правой ненулевой цифры стоят только нули, то эти нули можно отбросить, в результате получится по значению та же самая дробь.
75,24800 = 75,2480 = 75,248
Нули, стоящие в целой части десятичной дроби, перед самой левой ненулевой цифрой, эту десятичную дробь не изменяют.
75,248 = 075,248 = 0075,248 = 00075,248 = …
У меня есть дополнительная информация к этой части урока!
Нули, стоящие между десятичными знаками, убирать и дописывать ни в коем случае нельзя.
Нуль, стоящий между десятичными знаками несет в себе информацию о том, что в данном разряде отсутствуют единицы.
Например, 2,05 ≠ 2,5.
2,05 и 2,5- это абсолютно два разных числа.
2,05— две целых пять сотых.
2,5— две целых пять десятых.
Любую десятичную дробь можно представить в виде суммы, т.е. разложить по разрядам.
Сумма разрядных слагаемых- это запись числа в виде суммы его разрядных единиц.
Делается это так же просто, как и для натуральных чисел.
Попробуем разложить десятичную дробь по разрядам на примере.
Разложите десятичную дробь 43,2086.
Число 43,2086 содержит следующие разряды:
Число содержит 4 десятка, 3 единицы, 2 десятых, сотых, 8 тысячных, 6 десятитысячных.
В результате получаем:
43,2086 = 40 + 3 + 0,2 + 0,00 + 0,008 + 0,0006
Пройти тест и получить оценку можно после входа или регистрации
Изображение десятичной дроби на координатном луче
Десятичную дробь, как и любое другое число, можно отметить на координатном луче.
Десятичные дроби на координатном луче изображают так же, как обыкновенные дроби (смешанные числа), поскольку десятичная дробь и соответствующая ей обыкновенная дробь- это одно и тоже число.
Для того чтобы отметить на координатном луче точку, которая будет соответствовать заданной десятичной дроби, нужно перевести эту десятичную дробь в обыкновенную дробь (смешанное число).
Отметим на координатном луче точку А(0,5) и точку В(1,3).
Изобразим горизонтальный координатный луч, направленный вправо, с началом отсчета в точке О(0) и единичным отрезком ОЕ, равным 1 единице.
По условию нам даны десятичные дроби с одним десятичным разрядом, следовательно, соответствующие им обыкновенные дроби, содержат в знаменателе число 10.
Десятичной дроби 0,5 соответствует обыкновенная правильная дробь \(\mathbf<\frac<5><10>>\).
Десятичной дроби 1,3 соответствует смешанное число \(\mathbf<1\frac<3><10>>\).
Так как знаменатель полученных нами обыкновенных дробей равен десяти, разобьем единичный отрезок на десять равных частей (долей), каждая такая часть будет равна \(\mathbf<\frac<1><10>>\) (одной десятой) единичного отрезка ОЕ.
1. Правильная дробь \(\mathbf<\frac<5><10>>\)- это часть единичного отрезка, представляет собой 5 частей из десяти.
Отметим точку А(\(\mathbf<\frac<5><10>>\)) на координатном луче, для этого отсчитаем от начала координат пять частей (долей) единичного отрезка.
Так как \(\mathbf<\frac<5><10>>\) и 0,5— это одно и тоже число, следовательно, А(\(\mathbf<\frac<5><10>>\)) и А(0,5)- это одна и та же точка на координатном луче.
Обозначим на координатном луче точку В с координатой \(\mathbf<1\frac<3><10>>\).
Чтобы изобразить смешанное число \(\mathbf<1\frac<3><10>>\) отсчитаем от начала координат один целый единичный отрезок, а от второго единичного отрезка возьмем только три доли из десяти.
Отметим точку В(\(\mathbf<1\frac<3><10>>\)) на координатном луче.
Смешанное число и соответствующая ему неправильная дробь принадлежат одной точке координатного луча.
Переведем смешанное число \(\mathbf<1\frac<3><10>>\) в неправильную дробь, получим:
Так, если отсчитать от начала координат 13 частей единичного отрезка, каждый из которых равен \(\mathbf<\frac<1><10>>\) отрезка ОЕ, то в результате окажемся в точке с координатой \(\mathbf<\frac<13><10>>\).
В этой же точке мы ранее отметили точку В(\(\mathbf<1\frac<3><10>>\)).
Следовательно, точка с координатой 1,3, точка с координатой \(\mathbf<1\frac<3><10>>\) и точка с координатой \(\mathbf<\frac<13><10>>\)- это одна и та же точка на координатном луче.
В десятичной дроби справа от запятой после самой последней цифры, неравной нулю, можно приписывать сколько угодно нулей, в результате чего значение десятичной дроби не изменяется.
Например, 0,2 = 0,20
Равные десятичные дроби на координатном луче изображаются одной и той же точкой.
Точка с координатой 0,2 и точка с координатой 0,20— это одна и та же точка на координатном луче.
Меньшая десятичная дробь на координатном луче располагается левее, большая- правее.
Рассмотрим, как относительно друг друга на координатном луче расположены точки С(0,2), D(0,5), K(0,7).
Изобразим горизонтальный координатный луч, направленный вправо, с началом отсчета в точке О(0) и единичным отрезком ОЕ, равным 1 единице.
По условию нам даны десятичные дроби с одним десятичным разрядом, следовательно, соответствующие им обыкновенные дроби, содержат в знаменателе число 10.
Так как знаменатель полученных нами обыкновенных дробей равен десяти, разобьем единичный отрезок на десять равных частей (долей), каждая такая часть будет равна \(\mathbf<\frac<1><10>>\) (одной десятой) единичного отрезка ОЕ.
Десятичной дроби 0,2 соответствует обыкновенная правильная дробь \(\mathbf<\frac<2><10>>\).
Дробь \(\mathbf<\frac<2><10>>\)- это часть единичного отрезка, представляет собой 2 части из десяти (две доли единичного отрезка ОЕ).
Десятичной дроби 0,5 соответствует обыкновенная правильная дробь \(\mathbf<\frac<5><10>>\).
Дробь \(\mathbf<\frac<5><10>>\) представляет собой 5 частей из десяти (пять долей единичного отрезка ОЕ).
Десятичной дроби 0,7 соответствует обыкновенная правильная дробь \(\mathbf<\frac<7><10>>\).
Дробь \(\mathbf<\frac<7><10>>\)- это часть единичного отрезка, представляет собой 7 частей из десяти (семь долей единичного отрезка ОЕ).
Точка С с координатой 0,2 лежит левее точки D(0,5) и точки K(0,7), следовательно, десятичная дробь 0,2 меньше десятичных дробей 0,5 и 0,7.
Точка D с координатой 0,5 лежит правее точки С(0,2) и левее точки K(0,7), следовательно, десятичная дробь 0,5 больше 0,2 и меньше 0,7.
Пройти тест и получить оценку можно после входа или регистрации
Источник