Меню

Как определить относительную погрешность измерения мощности



Погрешности измерений

Общие сведения об измерениях. Погрешности измерений и средств измерений

Общие сведения об измерениях

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств. Под измерением понимается процесс экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы классифицируются по различным признакам. Например, измерительные приборы можно построить на основе аналоговой схемотехники или цифровой. Соответственно их делят на аналоговые и цифровые. Ряд приборов, выпускаемых промышленностью, допускают только отсчитывание показаний. Эти приборы называются показывающими. Измерительные приборы, в которых предусмотрена регистрация показаний, носят название регистрирующих.

Погрешности измерений

Погрешность является одной из основных характеристик средств измерений.

Под погрешностью электроизмерительных приборов, измерительных преобразователей и измерительных систем понимается отклонение их выходного сигнала от истинного значения входного сигнала.

Абсолютная погрешность Δa прибора есть разность между показанием прибора ах и истинным значением а измеряемой величины, т.е.

Абсолютная погрешность, взятая с обратным знаком, называется поправкой.

Относительная погрешность δ представляет собой отношение абсолютной погрешности к истинному значению измеряемой величины. Относительная погрешность, обычно выражаемая в процентах, равна

Приведенная погрешность γП есть выраженное в процентах отношение абсолютной погрешности Δa к нормирующему значению апр

Нормирующее значение – условно принятое значение, могущее быть равным конечному значению диапазона измерений (предельному значению шкалы прибора).

Погрешности средств измерений

Класс точности прибора указывают просто числом предпочтительного рода, например, 0,05. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Класс точности прибора (например, амперметра) дается выражением

При установлении классов точности приборов нормируется приведенная погрешность, а не относительная. Причина этого заключается в том, что относительная погрешность по мере уменьшения значений измеряемой величины увеличивается.

По ГОСТ 8.401-80 в качестве значений класса точности прибора используется отвлеченное положительное число из ряда:

В интервале от 1 до 100 можно использовать в качестве значений класса точности числа:

(α = 0) 1; 1,5; 2; 2,5; 4; 5; 6;

(α = 1) 10; 15; 20; 25; 40; 50; 60.

Т.е. четырнадцать чисел 1; 1,5; 2; 2,5; 4; 5; 6; 10; 15; 20; 25; 40; 50; 60.

Необходимо отметить, классы точности от 6,0 и выше считаются очень низкими.

Примеры решения задач

Задача №1

Определить для вольтметра с пределом измерения 30 В класса точности 0,5 относительную погрешность для точек 5, 10, 15, 20, 25 и 30 В и наибольшую абсолютную погрешность прибора.

Решение

  1. Класс точности указывают просто числом предпочтительного рода, например, 0,5. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Приведенная погрешность (выраженное в процентах отношение абсолютной погрешности к нормирующему значению)

постоянна и равна классу точности прибора.

Относительная погрешность однократного измерения (выраженное в процентах отношение абсолютной погрешности к истинному значению измеряемой величины)

уменьшается к значению класса точности прибора с ростом измеренного значения к предельному значению шкалы прибора.

Абсолютная погрешность однократного измерения

постоянна на всех отметках рабочей части шкалы прибора.

По условию задачи: Uизм = Ui = 5, 10, 15, 20, 25 и 30 В – измеренное значение электрической величины; Uпр = 30 В – предел шкалы вольтметра.

Наибольшая абсолютная погрешность вольтметра

Источник

Определение относительных погрешностей измерения сопротивления в цепи постоянного тока с помощью амперметра и вольтметра при подключении их двумя возможными способами. Определение параметров периодического сигнала поступающего после однополупериодного выпрямителя

Страницы работы

Содержание работы

Для определения мощности в цепи постоянного тока были измерены напряжение сети U вольтметром класса точности NB с пределом измерений Um, ток I амперметром класса точности Na с пределом измерений Im. Определить мощность, потребляемую приёмником, а также относительную и абсолютную погрешности её определения.

Читайте также:  Измерение сопротивления изоляции при ремонте

Дано:

Найти:

1) Найдем мощность, потребляемую приемником

2) Класс точности определяет приведенную погрешность

3) Найдем абсолютную погрешность измерения тока и напряжения

,

.

4) Найдем абсолютную погрешность измерения мощности при косвенном измерении

5) Найдем относительную погрешность измерения мощности

6) Доверительный интервал результата измерения с вероятностью .

Проведено пять независимых наблюдений одного и того же напряжения U. Найти результат измерения и доверительную вероятность того, что абсолютная погрешность измерения не превышает по модулю DU. Систематической погрешностью можно пренебречь.

Дано:

Найти:

1) Определим среднее арифметическое результатов измерения

2) Определяем среднее квадратичное результатов измерения

3) Для определения интервала и вероятности пользуются распределением Стьюдента, где доверительный интервал равняется , где

— коэффициент Стьюдента,

— среднее квадратичное отклонение результата измерения.

4) Находим доверительный интервал

5) Результат измерения

Обмотка магнитоэлектрического измерительного механизма имеет сопротивление RO и рассчитана на предельный длительный ток IO, при котором подвижная часть получает наибольшее отклонение. Каким образом на базе указанного измерительного механизма сделать амперметр с пределом измерений Im и вольтметр с пределом измерений Um?

Дано:

Найти: ,

1) Расчет измерительной цепи амперметра

1.1 Определяем коэффициент расширения пределов измерения по току

1.2 Определяем сопротивление шунта

1.3 Схема измерительной цепи

2) Расчет цепи вольтметра

2.1 Определяем коэффициент расширения пределов измерения по напряжению

2.2 Определяем добавочное сопротивление

2.3 Схема включения


Задача 4

Определить цену деления измерительных приборов:

1) амперметра, имеющего на шкале na делений и предел измерения Im;

2)вольтметра, имеющего nв делений шкалы и предел измерения Um;

3) ваттметра, имеющего nВТ делений шкалы и пределы измерений по току Im ВТ и напряжению Um ВТ.

Дано:

Найти:

1) Цена деления амперметра

2) Цена деления вольтметра

3) Цена деления ваттметра

У вольтметра и амперметра с пределами измерений Um и Im, включенных соответственно через измерительные трансформаторы напряжения 6000/100 и тока 600/5, отчёт по шкале составил U2 и I2. Определить напряжение и ток в сети, а также предел допускаемой абсолютной и относительной погрешностей измерения, если известны класс точности приборов Na и Nв и измерительных трансформаторов Nтн и Nтт. Привести схему измерения.

Дано:

Найти:

1) Определим коэффициенты трансформации трансформатора напряжения и тока

2) Определим ток и напряжение в сети

3) Определим абсолютные погрешности амперметра и вольтметра

4) Определяем абсолютные погрешности коэффициентов трансформации трансформатора тока и напряжения

5) Результирующие абсолютные погрешности измерения тока и напряжения равны

6) Относительные погрешности измерения тока и напряжения

Определить относительные погрешности измерения сопротивления Rx в цепи постоянного тока с помощью амперметра и вольтметра при подключении их двумя возможными способами. Сопротивление амперметра – Ra, вольтметра – Rв. Сделать вывод о целесообразности использования той или иной схемы.

Дано:

Найти: .

Источник

Как определить относительную погрешность измерения мощности

Лабораторная работа №3

Цель работы – ознакомление с методами и средствами измерения мощности электрического тока, получение навыков работы с измерительными приборами и обработки результатов измерений.

Виды электрической мощности. Различают мгновенную, среднюю и импульсную мощности электрических тока. Мгновенная мощность определяется выражением

где u и i – мгновенные значения напряжения и тока в цепи.

Средняя мощность P равна среднему значению мгновенной мощности за время, равное периоду колебания,

где T – период напряжения или тока.

Импульсную мощность определяют как среднюю мощность за время действия импульса напряжения или тока

где tn – длительность импульса напряжения или тока.

В цепях постоянного тока мощность рассчитывается по формулам

где U и I – значение постоянного напряжения и тока, R – сопротивление цепи.

В цепях синусоидального тока различают средние активную, реактивную и полную мощности, которые рассчитывают по формулам

где U и I – действующие значения напряжения и тока в цепи, R, X и Z – активное, реактивное и полное сопротивление цепи, соответственно: — сдвиг фаз.

В цепях несинусоидального тока активную и реактивную мощности рассчитывают по формуле

где Pk и Qk – мощности отдельных гармоник.

Между импульсной и средней мощностями имеется взаимосвязь, определяемая выражением

где =T/tn – скважность импульсного тока.

Наибольшая мощность отдается генератором только при условии согласования его с нагрузкой, т.е. если сопротивление нагрузки ZH является комплексно сопряженной величиной внутреннему сопротивлению генератора Zг:

При этом в нагрузке рассеивается так называемая располагаемая мощность генератора

где U г — напряжение на выходе генератора.

Поступление мощности в нагрузку сопровождается выделением в ней теплоты Qт. При этом температура нагрузки повышается на величину за время Т , поэтому

Читайте также:  Линейка средство измерения поверка

где С — теплоемкость рабочего тела нагрузки.

В соответствии с формулой (13) измерение мощности можно производить посредством определения приращения температуры рабочего тела нагрузки за выбранное время Т. Поскольку количество теплоты, выделяемое в нагрузке, не зависит от формы тока и напряжения калибровку тепловых ваттметров можно выполнять на постоянном токе, пользуясь формулой

где I — постоянный ток в нагрузке.

Методы и средства. измерения мощности. Метода измерения мощности делятся на электрические, тепловые и механические. Электрические методы могут быть прямыми и косвенными. Тепловые и механические методы являются косвенными.

Косвенный электрический метод измерения мощности основан на использовании амперметра и вольтметра. Две возможные схемы измерения мощности при помощи амперметра и вольтметра приведены на рис. 1.а и б.

Для схемы, изображенной на рис. 1,а. расчетное значение мощности

отличается от мощности, потребляемой нагрузкой, на величину мощности Рv = UАIv , потребляемой вольтметром.

Для схемы, изображенной на pиc. 1,б, расчетное значение мощности, потребляемой нагрузкой,

отличается от мощности потребляемой нагрузкой, на величину мощности РА=UАIН, потребляемой амперметром.

При измерении мощности в цепях переменного тока формулы (15) и (16) можно использовать только при резистивной нагрузке, т.е. при cos=1. При реактивной нагрузке в результате расчета получают полную мощность. Для исключения погрешностей, вызванных: подключением измерительных приборов, в результаты расчетов по формулам (15) и (16) вводят поправки

для схемы рис. 1,а или

для схемы рис. 1.б, где Rv — сопротивление вольтметра, а RA — сопротивление амперметра.

Прямой электрический метод измерения мощности основан на использовании электродинамических, ферродинамических или электронных ваттметров. Схемы включение электродинамических и ферродинамических ваттметров приведены на рис. 2. Схема, изображенная на рис. 2,а. аналогична включению амперметра и вольтметра по схеме рис. 1,а. Схема, изображенная на рис. 2,6. аналогична включению амперметра и вольтметра по схеме рис. 1,6. Уравнение шкала ваттметра без учета погрешностей, вносимых обмотками, имеет вид

где — показание прибора, k.- коэффициент пропорциональности.

В связи с тем, что катушки ваттметра имеют сопротивление и индуктивность, в показаниях прибора появляется дополнительная погрешность.

При учете сопротивления Rv и индуктивности Lv катушки напряжения ваттметра появляется дополнительная угловая погрешность

где =arctg(Lv/Rv) — дополнительный фазовый сдвиг, вносимый обмоткой ваттметра.

Электронные ваттметры содержат перемножитель, выполняющий операцию перемножения напряжения и тока, и электронный вольтметр среднего или амплитудного значения напряжения. Структурная схема электронного ваттметра средней мощности приведена на рис.3.

В качестве перемножителей используют различные электронные или полупроводниковые приборы – электронные лампы, диоды, транзисторы, интегральные микросхемы. Широкое распространение получили ваттметры с перемножителями на преобразователях Холла.

Устройства преобразователя Холла приведено на рис.4. Преобразователь Холла ПХ состоит из полупроводников пластины, на которую нанесены две пары электродов. Электроды 1-2 включают в цепь тока управления, пропорционального напряжению на нагрузки, а электроды 3-4 подключают к вольтметру. Ток нагрузки проходит по катушке, создающей магнитный поток В, перпендикулярный плоскости полупроводниковой пластины. Напряжение на выходе преобразователя Холла пропорционально мощности в нагрузке

где Sx – чувствительность преобразователя Холла.

К косвенным относят также осциллографические методы измерения мощности. Электронным осциллографом можно измерять активную, реактивную и импульсную мощности.

Измерение импульсной мощности выполняют при помощи двухлучевого или двухканального электронного осциллографа. Для этого регистрируют кривые напряжения uН(t) и тока iН(t) в нагрузки, а затем графическим перемножением получают мгновенную мощности в нагрузке PН(t)=uН(t)iН(t). После этого по кривой мгновенной мощности вычисляют импульсную мощность, используя численное интегрирование. Например, пользуясь формулой Симпсона, импульсную мощность определяют по уравнению

где Pk – значение мгновенной мощности в точках отсчета.

Для измерения реактивной мощности на вход канала вертикального отклонения электронного осциллографа подают напряжение на нагрузки, а на вход канала горизонтального отклонения – напряжение, пропорциональное току нагрузки. В результате взаимодействия этих напряжений на экране осциллографа получаем изображение фигуры Лиссажу, которая при гармонических напряжениях, сдвинутых по фазе, представляют собой эллипс, изображённый на рис.5,а.

Площадь фигуры Лиссажу пропорциональна реактивной мощности нагрузки

где А и В – длины большой и малой осей эллипса, kx и kу – коэффициенты отклонения по напряжению и току.

Если реактивная мощность в нагрузке равна нулю, то эллипс вырождается в прямую линию (В=0) – рис.5.б. Если нагрузка потребляет только реактивную мощность, то оси эллипса А и В занимают горизонтальное и вертикальное положение (рис.5.в.)

Читайте также:  Джоуль единица измерения электричества

Особенно важное значение имеет измерение мощности на высокой частоте. Если на постоянном токе или переменном токе низкой частоты возможно измерение напряжения и тока и расчёт мощности по формуле (1)÷(10), то в диапазоне СВЧ измерений этих величин затруднено, так как размеры входных цепей измерительных приборов соизмеримы с длиной волны. Любое отличие сопротивлений источника и нагрузки от характеристического сопротивления передающего тракта приводит к неоднозначности отсчёта напряжения. В волноводах измерение напряжения вообще невозможно. Поэтому на высокой и сверхвысокой частотах измерение мощности производят только по эквивалентному тепловому эффекту.

Наиболее распространенное получение приборы, базирующиеся на тепловых методах измерения мощности. К их числу относят калориметрических ваттметрах измеряют приращение температуры рабочего тела, а измеряемую мощность рассчитывают по формуле

где k – коэффициент пропорциональности, определяемый экспериментально, — разность между температурной рабочего тела калориметра и окружающей средой.

В болометрических ваттметрах используют явление изменения сопротивления термочувствительного элемента при рассеянии в нем электромагнитной энергии, а в термоэлектрических ваттметрах измеряют термоэдс термопары, рассчитывают по формуле

где Uтэдс – термоэдс, kпр – коэффициент преобразования термопары.

Основные характеристики и приборы для измерения мощности. К основным характеристикам приборов для измерения мощности относят: диапазон измеряемых мощностей, диапазон рабочих частот, основную погрешность, входные сопротивления.

Диапазон измеряемых мощностей представляет собой области значений мощностей (или напряжений и токов), измеряемых приборов с нормированной погрешностью. Для многопредельных ваттметрах погрешность зависит от поддиапазона измерений.

На каждом поддиапазоне может быть установлена чувствительность ваттметра ил цена деления его шкалы. Для установления чувствительности определяют отношение приращения показаний прибора к изменению измеряемой мощности P:

Величину, обратную чувствительности, называют ценой деления ваттметра

Для определения цены деления ваттметра, имеющего отдельные пределы измерения по току и напряжению, необходимо пользоваться формулой

где П – число делений шкалы, IП и UП – пределы измерения по току и напряжению.

Абсолютное значение основной погрешности p определяют как разность между показаниями ваттметра PВ (или результатом расчёта при косвенном измерении мощности) и действительным значением мощности Pg , рассеиваемой в нагрузке.

Относительная погрешность р ваттметра определяют как отношение абсолютной погрешности р к действительному значению мощности Pg

Приведённая погрешность р ваттметра определяют как отношение абсолютной погрешности p к нормирующему значению мощности Рном

В качестве нормирующей мощности принимают предельное значение измеряемой мощности на выбранном поддиапазоне или произведение предельных значений тока и напряжения на выбранных поддиапазонах при косвенном измерении мощности.

Диапазон рабочих частот ваттметра характеризуется полосой частот входных сигналов, в которой возможно измерение с нормированной погрешностью. Дополнительная частотная погрешность не должна превышать основной погрешности.

1. Измерение мощности постоянного тока косвенным методом при помощи вольтметра и амперметра.
2. Измерение мощности постоянного тока прямым методом при помощи электродинамического ваттметра.
3. Определение класса точности электродинамического ваттметра.
4. Измерение мощности переменного тока при помощи электродинамического ваттметра.
5. Измерение мощности импульсной мощности при помощи электронного осциллографа.
6. Измерение реактивной и полной мощностей в цепи переменного тока.

Порядок выполнения работы.

1. Измерение мощности постоянного тока косвенным методом при помощи вольтметра и амперметра выполняют по схеме, приведенной на рис. б. Питание схемы производят от блока питание БП типа В5-9, а в качестве нагрузки используют магазин сопротивлений RH типа МСР. Измерение мощности выполняют при помоги вольтметра V1 и амперметра А типа Э59. Напряжение на амперметре измеряют вольтметром V2 типа В7-16А.

При измерении мощности напряжение источника БП устанавливают равным 20 B и контролируют по вольтметру V1. После этого изменяют сопротивление нагрузки и регистрируют показания приборов. Результаты измерений заносят в ф. 1.

Расчет мощности выполняют по формулам: измеренное значение мощности определяют по показаниям приборов V1 и А, Ри= Uv1IА мощность, потребляемую амперметром, рассчитывают по формуле РА = Uv2 IА, мощность, рассеиваемую в нагрузке, определяют с учетом поправки — РА по формуле PН= РИА.

Относительная погрешность измерения мощности определяют по формуле

где Iном и Uном – пределы измерения амперметра А и вольтметра V1, соответственно, kA и kv1 – классы точности амперметра и вольтметра.

Источник