Меню

Как определить случайную погрешность прямых измерений если



Как определить случайную погрешность прямых измерений если

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Источник

Оценка погрешностей результатов измерений

Оценка погрешностей результатов измерений

Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т. д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т. е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность , где и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Читайте также:  Измерение текстовой информации сообщение

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т. д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т. д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, — это неправильные отсчеты по прибору, неправильная запись отсчета и т. п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна кг/м3.

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины используется формула

, (1)

где — приборные ошибки прямых измерений величины , — частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

, .

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса), выведенный из следующих эмпирических положений.

1) погрешности измерений могут принимать непрерывный ряд значений;

2) при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

3) чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где — функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Читайте также:  Измерение магнитострикции ферромагнетика с помощью тензодатчика

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где — результат i-го измерения; — среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде .

Интервал значений от до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента, дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов nраспределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α

Источник

Случайные погрешности прямых измерений

Оценка истинного значения измеряемой величины

Случайные погрешности проявляются при многократных измерениях одной и той же величины в одинаковых условиях. Влияние случайных погрешностей на результат измерений надо учитывать и стремиться по возможности уменьшать.

Пусть в процессе прямых измерений получен ряд значений физической величины: Х1, Х2, Х3, . Хn.

Как оценить истинное значение величины и найти случайную погрешность измерений?

Для большинства измерений наилучшей оценкой истинного значения Хист, как показано в математической теории погрешностей, следует считать среднее арифметическое Хср ряда измеренных значений (в данной работе для обозначения среднего арифметического значения используется индекс “ср”, например Хср или черта над величиной, например ):

, (1.1)

где n – количество проведенных измерений величины Х.

Оценка случайной погрешности

Теперь надо ответить на вопрос: чему равна случайная погрешность Dсл полученной выше величины Хср?

В теории погрешностей показано, что в качестве оценки случайной погрешности Dсл среднего арифметического значения Хср следует брать так называемое среднее квадратическое отклонение s, которое вычисляется по формуле:

. (1.2)

Очень важной особенностью этой формулы является то, что определяемая величина случайной погрешности s уменьшается при увеличении числа измерений n. (систематическая погрешность этим свойством не обладает). Значит, если необходимо уменьшить случайную погрешность, то это можно сделать путем увеличения количества повторных измерений.

Эта величина погрешности определяет тот интервал, внутрь которого попадает истинное значение измеренной величины с определённой вероятностью Р. Чему же равна эта так называемая доверительная вероятность?

Теория погрешностей показывает, что для большого количества измерений n>30, если случайную погрешность принять равной среднему квадратическому отклонению Dсл=s, то доверительная вероятность равна 0,68. Если в качестве оценки случайной погрешности взять удвоенное значение Dсл=2s, то внутрь этого увеличенного интервала истинное значение будет при многократных измерениях попадать с доверительной вероятностью Р=0,95, для интервала Dсл=3s вероятность Р=0,997 (рис. 1.1).

В интервал 1 (см. рис. 1.1) истинное значение величины Х может попасть с вероятностью Р=0,68, в интервал 2 — с вероятностью Р=0,95, в интервал 3 – с вероятностью Р=0,997.

Какой же оценкой для случайной погрешности следует пользоваться? Для измерений, которые проводятся с учебными целями, достаточно в качестве оценки Dсл брать s , для которой Р=0,68. Для научных измерений обычно используют оценку Dсл=2s с Р=0,95. В особо ответственных случаях, когда проводимые измерения связаны с созданием эталонов или имеют значение для здоровых людей, в качестве оценки случайной погрешности берут 3s , для которой Р=0,997.

В лабораторных работах можно брать в качестве оценки случайной погрешности Dсл величину s , для которой доверительная вероятность Р=0,68.

Суммирование погрешностей

Общая абсолютная погрешность измерения D всегда содержит две составляющие: систематическую погрешность Dс и случайную погрешность Dсл

Читайте также:  Чему равна относительная погрешность измерения силы тока

Можно оценить величину Dс (п.4) и отдельно оценить величину D. Как после этого найти суммарную погрешность?

Общая абсолютная погрешность находится по формуле

. (1.3)

Сложение погрешностей можно интерпретировать и графически (рис. 1.2). Общая погрешность D равна гипотенузе треугольника, катетами которого являются Dс и Dсл.

Покажем, что часто при сложении погрешностей формулой (1.3) можно и не пользоваться. Пусть одна из погрешностей, например Dс, в 2 раза меньше, чем другая Dсл. Тогда, согласно формуле (1.3),

= .

Видно, что абсолютная погрешность в этом случае лишь на 10% больше, чем случайная. То есть если бы систематической погрешности вообще не было, то в нашем примере это мало бы повлияло на общую абсолютную погрешность. Теперь учтем, что погрешность редко удается оценить с точностью лучше чем 10-20%, тогда в нашем случае можно положить D=Dсл, то есть систематической погрешностью Dс можно вообще пренебречь.

Из сказанного вытекают следующие правила измерений:

1. Если систематическая погрешность в два и более раз больше, чем случайная, то случайной погрешностью можно пренебречь; большое количество измерений при этом проводить нецелесообразно, так как Dс не уменьшается при увеличении n. Итак, если Dс> 2Dсл, то D » Dс (при этом достаточно провести три-четыре измерения только для того, чтобы убедиться, что показания прибора повторяются без случайных отклонений).

2. Если, наоборот, случайная погрешность более чем в 2 раза превышает систематическую, то систематической погрешностью можно пренебречь, то есть если Dсл > 2Dс, то D » Dсл (желательно провести побольше измерений для уменьшения Dсл).

3. Если обе составляющие общей абсолютной погрешности соизмеримы, то следует их суммировать по формуле (1.3) или графически по рис. 1.3. (Количество измерений целесообразно увеличить для уменьшения Dсл и перехода к случаю 1).

Принимая во внимание, что вместо Dсл можно взять её оценку s, то формула (1.3) примет вид:

На схеме (рис. 1.3) обобщены методы определения погрешности при прямых измерениях.

Правила округления погрешности и результата измерения

Рассчитывая значения систематической, случайной и суммарной погрешностей, особенно при использовании электронного калькулятора, получают значение с большим числом знаков. Однако исходные данные для этих расчетов всегда указываются с одной или двумя значащими цифрами. Действительно, класс точности прибора на его шкале указывается не более чем с двумя значащими цифрами, а среднее квадратичное отклонение не имеет смысла записывать с более чем двумя значащими цифрами, так как точность этой оценки при 10 измерениях не выше 30%.

Вследствие этого и в окончательном значении расчетной погрешности должны быть оставлены только первые одна – две значащие цифры.

При этом необходимо учитывать следующее. Если полученное число начинается с цифры 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30 – 50%), это недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, то есть указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

В итоге можно сформулировать правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Абсолютная погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, – если первая есть 3 и более.

2. Среднее значение измеренной величины округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.

3. Относительную погрешность, выраженную в процентах, достаточно записать двумя значащими цифрами.

4. Округления производится лишь в окончательном ответе, а все предварительные вычисления будут с одним-двумя лишними знаками.

Пример: На вольтметре класса точности 2,5 с пределом измерений 300 В были произведены несколько повторных измерений одного и того же напряжения. При этом оказалось, что все замеры дали одинаковый результат 267,5 В.

Отсутствие различий между знаками говорит о том, что случайная погрешность пренебрежимо мала, поэтому суммарная погрешность совпадает с систематической (см. рис. 1.3 а).

Сначала найдем абсолютную, а затем относительную погрешности. Абсолютная погрешность градуировки прибора равна:

Так как первая значащая цифра абсолютной погрешности больше трех, то это значение должно быть округлено до 8 В.

В значении относительной погрешности должны быть сохранены два значащих разряда 2,8%

Таким образом, в окончательном ответе должно быть сообщено “Измеренное напряжение U=(268+8) В при относительной погрешности dU=2,8% ”.

Источник