Меню

Как по классу точности рассчитать инструментальную погрешность измерения



Как по классу точности рассчитать инструментальную погрешность измерения

Класс точности — основная метрологическая характеристика средства измерения (прибора, в частности).

Классы точности разных средств измерений (приборов) в общем случае могут быть заданы различными способами. Используются предельные значения основных абсолютных, относительных и приведенных погрешностей. Для правильной оценки инструментальной погрешности в каждом конкретном случае (при выборе одного из нескольких приборов) необходимо достаточно уверенно ориентироваться в различных способах задания классов точности.

Класс точности средства измерения говорит о максимально возможной (предельной) инструментальной составляющей общей погрешности результата измерения. Реально инструментальная погрешность у исправного и своевременно поверяемого прибора может принимать любое значение внутри заданных классом точности пределов.

Классы точности различных отечественных приборов могут задаваться изготовителями по-разному, но в соответствии со стандартами (в России — ГОСТ 8.401 — 80. Классы точности средств измерений. Общие требования). Чаще всего используются следующие четыре варианта задания классов точности, т.е. предельных значений погрешностей.

Графически зависимости значений абсолютных и относительных погрешностей от значения измеряемой величины Х можно представить так — см. рис.1 .

Типичным для аналоговых стрелочных и простых (не очень точных) цифровых приборов является задание класса точности предельным значением основной приведенной погрешности g . Это означает постоянство (независимость от значения измеряемой величины X ) предельной абсолютной погрешности D = const (см. рис.1.а. ), т.е. имеет место только аддитивная погрешность.

Для некоторых аналоговых приборов (в частности, самопишущих) применяется задание класса точности пределом основной относительной погрешности d = const (см. рис.1.б .). Это говорит о мультипликативном характере погрешности прибора.

Для отечественных цифровых приборов часто принято задание класса в виде предельного значения основной относительной погрешности, содержащей два слагаемых — аддитивную и мультипликативную составляющие (соответственно, d·Xk / X и c — d ) — см. рис. 1.в.

Иногда, особенно часто в случае с импортными приборами, класс точности цифровых приборов задается пределом основной абсолютной погрешности, также состоящей из двух частей — аддитивной ( b·FS ) и мультипликативной ( a·R ) — см. рис.1.г .

Существует разновидность задания коэффициентов a и b в процентах. Например, D = ± (0,2 % от отсчета + 0,2 % от диапазона измерения).

Значения коэффициентов a, b, c, d в этих выражениях выбираются изготовителем прибора обычно из ряда 1 — 1,5 — 2,0 — 2,5 — 4 — 5 — 6 с умножением на число 10 в различных степенях. Поскольку собственно формулы погрешностей одни и те же, то достаточно указывать лишь значения этих коэффициентов. Например, класс точности цифрового вольтметра может быть выражен просто дробью c/d = 0,5/0,2 (здесь коэффициенты c/d выражены в процентах). Для случая задания класса по пределу абсолютной погрешности, может быть просто задано отношение коэффициентов a/b = 0,001/0,001 (безразмерные единицы). Или, оно может быть задано в процентах от результата измерения и от диапазона измерения, например, 0,1%R /0,1%FS .

Гиперболический характер поведения относительной погрешности d в зависимости от значения измеряемой величины X (см. рис.1.а., 1.в., 1.г. ) объясняет известные рекомендации работать в таких диапазонах измерения (или выбирать такой прибор), где значение X как можно ближе к верхнему пределу диапазона измерения Xk. Это обеспечивает меньшую относительную погрешность. Минимальное ее значение будет иметь место в точке X = Xk .

Зная класс точности, результат измерения, условия эксплуатации, можно оценить максимально возможную инструментальную составляющую погрешности результата. Предельная суммарная инструментальная погрешность складывается из предельной основной и предельной дополнительной погрешностей. Основная погрешность — это та, что имеет место в нормальных условиях эксплуатации. Дополнительной называется погрешность, вызванная изменением влияющих величин (например, температуры) за пределы нормальных значений.

Основная погрешность легко определяется по классу точности.

Дополнительная (температурная) погрешность определяется основной погрешностью и значением температуры окружающей среды в процессе эксперимента,. в котором используется измерительный прибор. Дополнительная погрешность может превосходить основную, но также легко может быть оценена. Например, дополнительная погрешность, вызванная выходом температуры за пределы нормальных значений (типично 20°С ± 5°C или, что характерно для многих приборов зарубежных фирм, 23°С ± 5°C ), обычно численно оценивается для аналоговых приборов как “основная на каждые десять градусов отличия от нормальной температуры”, а для цифровых — как “половина основной на каждые десять градусов отличия от нормальной температуры”. Например, если значение основной абсолютной погрешности (найденное по классу точности) для используемого отечественного цифрового мультиметра (в режиме вольтметра) равно Dо = ± 0,1 В, а температура окружающей среды во время эксперимента была +30°C , то дополнительная абсолютная предельная погрешность не превзойдет значения

Предельное значение суммарной инструментальной погрешности D при этом будет равно

Читайте также:  Как измерить внутренний диаметр канавки

Отметим, что данный расчет дает в общем случае завышенные значения погрешностей, т.е. такие, выше которых быть не должно, если приборы исправны и проверены.

Источник

Погрешности измерений, представление результатов эксперимента

п.1. Шкала измерительного прибора

Примеры шкал различных приборов:


Манометр – прибор для измерения давления, круговая шкала

Вольтметр – прибор для измерения напряжения, дуговая шкала

Индикатор громкости звука, линейная шкала

п.2. Цена деления

Пример определения цены деления:

Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале: a = 5 c
b = 10 c Между ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: \begin \triangle=\frac\\ \triangle=\frac<10-5><24+1>=\frac15=0,2\ c \end

п.3. Виды измерений

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Определяется субъективным фактором, ошибками экспериментатора.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

Пример получения результатов прямых измерений с помощью линейки:

Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><1+1>=0,5\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,5><2>=0,25\ \text <см>\end Истинное значение: \(L_0=4\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,00\pm 0,25)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,25><4,00>\cdot 100\text<%>=6,25\text<%>\approx 6,3\text <%>$$
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><9+1>=0,1\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,1><2>=0,05\ \text <см>\end Истинное значение: \(L_0=4,15\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,15\pm 0,05)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,05><4,15>\cdot 100\text<%>\approx 1,2\text <%>$$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: \begin m_0=\frac<99,8+101,2+100,3><3>=\frac<301,3><3>\approx 100,4\ \text <г>\end Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности \(m_0\) и измерения. \begin \triangle_1=|100,4-99,8|=0,6\\ \triangle_2=|100,4-101,2|=0,8\\ \triangle_3=|100,4-100,3|=0,1 \end Находим среднее абсолютное отклонение: \begin \triangle_=\frac<0,6+0,8+0,1><3>=\frac<1,5><3>=0,5\ \text <(г)>\end Мы видим, что полученное значение \(\triangle_\) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: \begin \triangle m=max\left\<\triangle_; d\right\>=max\left\<0,5; 0,05\right\>\ \text <(г)>\end Записываем результат: \begin m=m_0\pm\triangle m\\ m=(100,4\pm 0,5)\ \text <(г)>\end Относительная погрешность (с двумя значащими цифрами): \begin \delta_m=\frac<0,5><100,4>\cdot 100\text<%>\approx 0,050\text <%>\end

п.6. Представление результатов эксперимента

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n \(\triangle=\frac\), мл
1 20 40 4 \(\frac<40-20><4+1>=4\)
2 100 200 4 \(\frac<200-100><4+1>=20\)
3 15 30 4 \(\frac<30-15><4+1>=3\)
4 200 400 4 \(\frac<400-200><4+1>=40\)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем \(V_0\), мл Абсолютная погрешность
\(\triangle V=\frac<\triangle><2>\), мл
Относительная погрешность
\(\delta_V=\frac<\triangle V>\cdot 100\text<%>\)
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0\pm 0,1)\ \text<м>,\ \ x_2=(4,0\pm 0,03)\ \text <м>$$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: \begin \delta_1=\frac<0,1><4,0>\cdot 100\text<%>=2,5\text<%>\\ \delta_2=\frac<0,03><4,0>\cdot 100\text<%>=0,75\text <%>\end Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: \(\delta_2\lt \delta_1\), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ \triangle v_1=\frac<10><2>=5\ (\text<км/ч>),\ \ \triangle v_2=\frac<1><2>=0,5\ (\text<км/ч>) $$ Показания каждого из спидометров: $$ v_1=(54\pm 5)\ \text<км/ч>,\ \ v_2=(72\pm 0,5)\ \text <км/ч>$$ Скорость сближения равна сумме скоростей: $$ v_0=v_<10>+v_<20>,\ \ v_0=54+72=125\ \text <км/ч>$$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ \triangle v=\triangle v_1+\triangle v_2,\ \ \triangle v=5+0,5=5,5\ \text <км/ч>$$ Скорость сближения с учетом погрешности равна: $$ v=(126,0\pm 5,5)\ \text <км/ч>$$ Относительная погрешность: $$ \delta_v=\frac<5,5><126,0>\cdot 100\text<%>\approx 4,4\text <%>$$ Ответ: \(v=(126,0\pm 5,5)\ \text<км/ч>,\ \ \delta_v\approx 4,4\text<%>\)

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки \(d=\frac<0,1><2>=0,05\ \text<см>\)
Результаты прямых измерений длины и ширины: $$ a=(90,20\pm 0,05)\ \text<см>,\ \ b=(60,10\pm 0,05)\ \text <см>$$ Относительные погрешности (не забываем про правила округления): \begin \delta_1=\frac<0,05><90,20>\cdot 100\text<%>\approx 0,0554\text<%>\approx \uparrow 0,056\text<%>\\ \delta_2=\frac<0,05><60,10>\cdot 100\text<%>\approx 0,0832\text<%>\approx \uparrow 0,084\text <%>\end Площадь столешницы: $$ S=ab,\ \ S=90,2\cdot 60,1 = 5421,01\ \text<см>^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ \delta_S=\delta_a+\delta_b=0,056\text<%>+0,084\text<%>=0,140\text<%>=0,14\text <%>$$ Абсолютная погрешность: \begin \triangle S=S\cdot \delta_S=5421,01\cdot 0,0014=7,59\approx 7,6\ \text<см>^2\\ S=(5421,0\pm 7,6)\ \text<см>^2 \end Ответ: \(S=(5421,0\pm 7,6)\ \text<см>^2,\ \ \delta_S\approx 0,14\text<%>\)

Источник

Инструментальная погрешность

Инструментальная погрешность — это составляющая погрешности, зависящая от погрешности (класса точности) средства измерения. Такие погрешности могут быть выявлены либо теоретически на основании механического, электрического, теплового, оптического расчета конструкции прибора, либо опытным путем на основе контроля его показаний по образцовым мерам, по стандартным образцам, а также компарированием показаний прибора с аналогичными измерениями на других приборах.

Инструментальные погрешности, присущие конструкции прибора, могут быть легко выявлены из рассмотрения кинематической, электрической или оптической схемы. Например, взвешивание на весах с коромыслом обязательно содержит погрешность, связанную с неравенством длин коромысла от точек подвеса чашек до средней точки опоры коромысла. В электрических измерениях на переменном токе обязательно будут погрешности от сдвига фаз, который появляется в любой электрической цепи. В оптических приборах наиболее частыми источниками систематической погрешности являются аберрации оптических систем и явления параллакса. Общим источником погрешностей в большинстве приборов является трение и связанные с ним наличие люфтов, мертвого хода, свободного хода, проскальзывания.

Способы устранения или учета инструментальных погрешностей достаточно хорошо известны для каждого типа прибора. В метрологии процедуры аттестации или испытаний часто включают в себя исследования инструментальных погрешностей. В ряде случаев инструментальную погрешность можно учесть и устранить за счет методики измерений. Например, неравноплечесть весов можно установить, поменяв местами объект и гири. Аналогичные приемы существуют практически во всех видах измерения.

Инструментальные погрешности, часто связанные с несовершенством технологии изготовления измерительного прибора. Особенно это касается серийных приборов, выпускаемых большими партиями. При сборке может иметь место отличие в сигналах с датчиков, отличие в установке шкал. Подвижные части приборов могут собираться с разным натягом, механические детали могут иметь разные значения допусков и посадок даже в пределах установленной нормы. В оптических приборах огромное значение имеет качество сборки или юстировка оптической измерительной системы. Современные оптические приборы могут иметь десятки и сотни сборочных единиц, а допуски при сборке составляют дол и длины волны оптического излучения (λ = 0,4 — 0,7 мкм).

Методы выявления таких погрешностей чаще всего состоят в индивидуальной градуировке измерительного прибора по образцовым мерам или по образцовым приборам. В современных приборах коррекция показаний может быть выполнена не только переградуировкой шкалы, но и коррекцией электрического сигнала или компьютерной обработкой результата. Естественно, что во всех случаях коррекции должно предшествовать исследование показаний прибора.

Инструментальные погрешности, связанные с износом или старением средства измерения, имеют определенные характерные особенности. Процесс износа, как правило, проявляется в погрешностях измерения постепенно. Изменяются зазоры в сопрягаемых деталях, соприкасающиеся поверхности покрываются коррозией, изменяются упругости пружин и т. д. Изменяется масса гирь, уменьшаются размеры образцовых мер, изменяются электрические и физико-химические свойства узлов и деталей приборов, и все это приводит к изменению показаний приборов. Старение приборов — это, как правило, следствие изменений структуры материалов, из которых сделан прибор. Изменяются не только механические характеристики, но и электрические, оптические, физико-химические. Стареют металлы и сплавы, изменяя исходную намагниченность, стареет оптика, приобретая дополнительное светорассеяние или центры окраски, стареют датчики состава веществ. Последнее хорошо известно тем, кто профессионально работал с химреактивами, которые могут сорбировать воду, реагировать с окружающей средой и с примесями. Использование химических веществ в измерительной технике всегда необходимо с учетом срока годности реактива.

Устранение погрешностей приборов от старения или износа, как правило, проводится по результатам поверки, когда устанавливается погрешность по истечении какого-либо длительного времени хранения или эксплуатации. В ряде случаев достаточно почистить прибор, но иногда требуется ремонт или перекалибровка шкалы. Например, при появлении систематических погрешностей во взвешивании на весах удается вернуть им работоспособность обычным техническим обслуживанием — регулировкой и смазкой. При более серьезном старении приходится переполировывать трущиеся детали или заменять сопрягаемые детали.

Особенно важно выявить систематическую погрешность у приборов, предназначенных для поверки средств измерений — у образцовых приборов. Как правило, на образцовых приборах выполняется меньший объем работы, чем на рабочих приборах, и по этой причине систематический временной «уход» показаний может не так наглядно проявляться. Вместе с тем невыявленная в образцовых приборах погрешность передается другим приборам, которые по данному образцовому прибору поверяются.

С целью уменьшения влияния процессов старения на измерительную технику в ряде случаев прибегают к искусственному старению наиболее ответственных узлов. У оптических приборов — рефрактометров, интерферометров, гониометров — старение проявляется часто в том, что несущие конструкции «ведет», т. е. они изменяют форму, особенно в тех местах, где есть сварка или обработка металла резанием. Для того чтобы свести к минимуму влияние такого старения, готовые узлы выдерживаются какое-то время в жестких климатических условиях или в специальных камерах, где процесс старения можно ускорить, изменив температуру, давление или влажность.

Отдельное место в инструментальных погрешностях занимает неправильная установка и исходная регулировка средства измерения. Многие приборы имеют встроенные указатели уровня. Это значит, что перед измерением нужно отгоризонтировать прибор. Причем, такие требования предъявляются не только к средствам измерений высокой точности, но и к рутинным приборам массового использования. Например, неправильно установленные весы будут систематически «обвешивать» покупателя, на гониометре невозможно работать без тщательного горизонтирования отсчетного устройства. В приборах для измерения магнитного поля весьма существенным может оказаться ориентация его относительно силовых линий поля Земли. Озонометры нужно очень тщательно ориентировать по Солнцу. Многие приборы требуют установки по уровню или по отвесу. Если двухплечие весы не установлены горизонтально, нарушаются соотношения длин между коромыслами. Если маятниковые механизмы или грузопоршневые манометры установлены не по отвесу, то показания таких приборов будут сильно отличаться от истинных.

Поможем написать любую работу на аналогичную тему

Источник