Меню

Как появились электрические измерения



История электрических измерений

Электромагнитный телеграф был первым практическим применением электричества, и телеграфисты первые почувствовали необходимость точно измерять электрические явления.

Как сравнить между собой две телеграфные линии? На одном конце линии находится батарея гальванических элементов, на другом телеграфный аппарат. Чем длиннее линия, тем большая батарея нужна, чтобы привести в действие телеграфный аппарат. Но зато чем толще проводники линии, тем меньшей батареи хватает для работы аппарата. Телеграфная линия оказывает сопротивление электрическому току и это сопротивление зависит и от длины линии, и от толщины ее проводников. Электрическое сопротивление — это была первая электрическая величина, которую понадобилось практически измерять.

Измерять можно, лишь сравнивая неизвестную величину с каким-то образцом — эталоном. И вот во всех странах, где только применялся электрический телеграф, стали готовить свои эталоны, образцы или, как говорят теперь, единицы сопротивлений. Всюду предлагалось за единицу брать сопротивление отрезка медной проволоки, только в разных странах устанавливали разную длину и разное сечение этого отрезка. Большое распространение получила единица сопротивления академика Якоби, предложенная им в 1848 г.

Образцовое сопротивление Якоби было выполнено из медной проволоки длиною в 25 футов (7,62 м) и диаметром около 2 /3 мм. Точную величину диаметра измерять трудно, и Якоби предложил поэтому узаконить вес образца. Диаметр должен быть таким, чтобы весь отрезок проволоки Бесил 345 гран.

Медная проволока — не очень хороший материал для эталона. Во-первых, электрическое сопротивление меди сильно зависит от температуры. Затем оно зависит от чистоты меди. Различные примеси увеличивают ее электросопротивление. Взамен медного эталона стали предлагаться образцовые сопротивления, сделанные из ртути. Этот металл легче получить химически чистым. Кроме того, при одинаковой длине и сечении сопротивление ртутного проводника в 57 раз больше, нежели сопротивление медного. Поэтому ртутный эталон может быть меньших размеров. Разные ученые предлагали как образцы сопротивлений ртутные столбики разйой длины.

Но измерить сопротивление — это еще не все, что требуется. Разные гальванические элементы будут прогонять через это сопротивление разные токи,. Следовательно, надо еще иметь единицу для измерения электрического напряжения. Долгое время в качестве такой единицы брали один из наиболее распространенных элементов — медно-цинковый элемент.

Все эти единицы были произвольные — такие, как аршин, локоть, и сравнивать измерения, проведенные различными исследователями в разных странах, было очень неудобно.

На первом метре, изготовленном 150 лет назад, был выгравирован гордый девиз: «На все времена, всем народам». И последующий опыт действительно показал, какие огромные удобства несет с собой единая система мер.

По мере развития практической электротехники необходимость установления единообразия измерений становилась все более и более насущной.

Установление единства системы

В 1881 г. в Париже была открыта Международная электротехническая выставка и состоялся Первый международный конгресс электриков, на котором был обсужден вопрос о международных единицах измерений.

В числе делегатов от России на этом конгрессе был А. Г. Столетов.

На этом конгрессе решено было связать электрические единицы с общей системой мер и весов, с системой грамм-метр-секунда.

Чтобы связать электрическую систему измерений с общей системой измерений, надо было сравнить силы электрические и силы тяготения. Для этого были построены специальные весы.

К чашке весов подвешивается одна катушка. Другая катушка, неподвижная, крепится на ящике, в котором стоят весы. Через катушки пропускался электрический ток. Тогда они притягивались одна к другой. Сила притяжения катушек уравновешивалась гирьками, которые клались на другую чашку. Так производились точные эталонные измерения токов. Но весы с чашками — это не самый удобный инструмент для измерений. В наши дни ведь и в торговле весы с чашками все больше вытесняются весами пружинными со стрелкой.

И для электрических измерений силу тока стали уравновешивать маленькой пружинкой — так утвердилась общепринятая теперь конструкция электрического измерительного прибора.

Сумма сил токов в разветвлении всегда равна току в главной цепи. На основании этого закона можно электрическим путем производить операцию сложения. Токи в ветвях задаются как отдельные слагаемые, а ток, который получится в главной цепи, будет суммой всех этих слагаемых. По этой же схеме производится и вычитание. Задается ток в главной цепи, из него вычитаются токи ответвлений и в последнем из ответвлений остается искомая разность.

Можно также производить операции сложения и вычитания не по току, а по напряжению. Вольтметр будет отмечать сумму и разность задаваемых напряжений.

Существуют суммирующие приборы, в которых складываются не силы токов, а количества импульсов. В измерительной системе есть ряд датчиков и каждый из них вырабатывает импульсы с частотой, пропорциональной измеряемой величине. Чем больше эта величина, тем больше импульсов в секунду посылает датчик. Простыми приспособлениями мож!но получить сумму или разность приходящих от многих датчиков импульсов.

Импульсные системы очень хороши для дальнеизмерения. Сила тока или напряжение могут ослабеть в пути, но число импульсов ни при каком состоянии линии связи не изменится. Bd многих энергосистемах на главном диспетчерском пункте есть прибор, который показывает суммарную нагрузку всей системы. Это суммирующий ваттметр, к нему сходятся импульсы от суммирующих приборов отдельных электростанций.

Умножение и деление

Сила взаимодействия между двумя катушками пропорциональна произведению токов в этих катушках. Электроизмерительный прибор с двумя катушками является умножающим механизмом. Так сконструированы электродинамические ваттметры. По их неподвижной катушке идет ток, потребляемый нагрузкой, а к подвижной катушке подводится напряжение нагрузки. Отклонение подвижной катушки пропорционально произведению тока на напряжение.

Читайте также:  Измерение температуры с помощью ардуино

Но иногда электрики производят операцию умножения по-иному. Есть приборы с квадратичной зависимостью, т. е. такие, что их отклонение пропорционально квадрату прилагаемой величины. Берут два таких прибора и подводят к одному сумму, а к другому разность тех величин, которые требуется перемножить. Отклонение одного прибора будет квадрат суммы, а другого — квадрат разности. А разность этих квадратов дает величину суммы и разности, пропорциональную произведению.

Квадратичную зависимость можно получить от электростатических, тепловых, ламповых, электродинамических приборов.

Деление одной величины на другую производится в электрических приборах, называемых логометрами. В них устроены две рамки, которые тянут указательную стрелку в, разные стороны. Устанавливающей пружины в этих приборах нет. Положение стрелки на шкале определяется отношением двух величин, подведенных к рамкам, т. е. стрелка показывает частное.

Дифференцирование и интегрирование

Несложно производить электрическим путем и операции высшей математики. Взять производную от какойлибо величины — это определить, как эта величина меняется в каждой данной точке. Если пропустить ток через катушку с малым активным сопротивлением и большой индуктивностью, то напряжение на этой катушке будет пропорционально не силе тока, а изменению во времени силы тока. Катушка производит операцию дифференцирования, берет производную от функции изменения тока. Если сила тока не меняется, то напряжение на катушке равно нулю, как то и следует из определения производной; для постоянной величины она равна нулю. А чем быстрее меняется ток, тем больше напряжение. Если ток через катушку меняется по закону синуса, то напряжение будет меняться, как косинус.

Можно) подать полученный результат на вторую катушку и таким образом получить вторую производную. При желании можно взять третью, четвертую и т. д. Суммирование последовательных значений переменной величины можно производить при помощи конденсатора. Напряжение на конденсаторе пропорционально влитому в него заряду. А заряд — это ток, умноженный на время. Если к конденсатору подвести ток, изменяющийся во времени, то результирующее напряжение на конденсаторе явится суммой всех отдельных значений тока. Конденсатор проинтегрирует кривую изменения силы тока. Кривая изменения напряжения на конденсаторе — это интегральная кривая от кривой изменения силы тока. Получившееся на конденсаторе напряжение можно подать на следующий конденсатор и таким образом повторить операцию интегрирования.

При помощи емкостей и самоиндукций можно интегрировать и дифференцировать процессы, которые совершаются в короткие доли секунды. Для относительно медленно совершающихся процессов применяются и Другие приспособления.

Очень распространенный электроинтегрирующий прибор— это обычный счетчик. Скорость вращения его якоря пропорциональна мощности, которая потребляется в контролируемой счетчиком цепи. А полное число оборотов, которое якорь счетчика сделает за какой-нибудь отрезок времени, пропорционально интегралу от этой мощности по времени за интересующее нас время. Этот интеграл, т. е. потребленную энергию, и показывают цифры за окошечком счетчика.

Электрические измерительные приборы явились могучими помощниками человеческих органов чувств. Они позволили нам глубже проникнуть в окружающий мир, более тонко и точно познать его сложную структуру.

Электрическими методами удобно измерять и очень маленькие, и очень большие величины. С электронным^ усилителями можно «услышать», как растет трава.

С помощью фотоэлементов и трансформаторов времени можно «увидеть» полет снаряда в канале орудия.

Точность и быстрота измерений все возрастают.

Электрическая же измерительная техника породила новый тип машин, помогающих не только органам чувств, но и мыслительным процессам. Это машины, способные анализировать явления природы, сопоставлять их, находить закономерности, управляющие этими явлениями.

В лабораториях Советского Союза разрабатывают и исследуют все новые электровычислительные машины. С помощью этих машин решаются сложнейшие задачи аэродинамики, баллистики, метеорологии. В несколько минут такая машина выполняет работу, которую группа вычислителей, вооруженных простыми арифмометрами, должна была бы делать много дней.

Чем больше работ выполняет машина, чем сложнее эти работы, тем квалифицированнее становится человек, тем больше простора для его высшей интеллектуальной дятельноети в условиях социалистического общества.

Источник: Электричество работает Г.И.Бабат 1950-600M

Источник

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ

Энциклопедия Кольера. — Открытое общество . 2000 .

Смотреть что такое «ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ» в других словарях:

Электрические измерения — измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др.… … Большая советская энциклопедия

электрические измерения — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN electrical measurementelectricity metering … Справочник технического переводчика

Электрические измерительные аппараты — Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При статических И. а. определяются постоянные или… … Энциклопедия техники

ИЗМЕРЕНИЯ ИНКЛИНОМЕТРИЧЕСКИЕ — производятся в скважинах с целью определения угла и азимута отклонения скважин от заданного направления. Определения производятся поинтервально через 100 м и более с целью возможного исправления направления скважины в процессе бурения и учета ее… … Геологическая энциклопедия

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ — совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических… … Энциклопедия Кольера

Читайте также:  Такса как измерить грудную клетку

измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

Электрические — 4. Электрические нормы проектирования радиотрансляционных сетей. М., Связьиздат, 1961. 80 с. Источник: Руководство: Руководство по проектированию сети электросвязи в сельской местности Смотри также родственные термины: 3.4 электрические биения … Словарь-справочник терминов нормативно-технической документации

Электрические станции — I. Общие понятия. II. Типы Э. станций по производству Э. энергии. III. Классификация их. IV. Здания и помещения Э. станций. V. Оборудование Э. станций. VI. Эксплуатация Э. станций. VII. Судовые Э. станции. VIII. Вагонные и поездные Э. станции. IX … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Источник

История открытия электричества: появление и развитие

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение — все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач Уильям Гильберт в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

Первая электростатическая машина

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

Лейденская банка

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

Читайте также:  Совместные измерения линейная зависимость

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик Луиджи Гальвани написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» — источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» — единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу — «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Электромагнитная индукция

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин.

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.

Источник