Меню

Как работает мостовая схема измерения



Мостовые измерения

Мостовая схема — схема соединения элементов электрической цепи (сопротивлений, выпрямительных диодов и т.д.), характеризующаяся наличием мостовой ветви между двумя точками схемы, не соединенными непосредственно с источником электрической энергии. В основу мостовой схемы положена схема моста Уитстона (рис. 1).

Принцип действия мостовой схемы основан на том, что при равенстве отношений полных сопротивлений в плечах моста Za/Zb = Z х/ Zd в диагонали моста (в индикаторном устройстве) нет тока. Повышая чувствительность нуль-индикатора, можно добиться в мостовой схеме весьма точного соблюдения равенства отношений полных сопротивлений. На этом принципе основаны мостовые измерения.

Рис. 1. Мостовая схема (схема моста Уитстона)

Источниками питания мостовых схем могут служить источники напряжения как постоянного так и переменного тока. Балансировка мостовой схемы совершенно не зависит от колебаний напряжения источника питания.

Мостовые измерения — методы измерения параметров электрических цепей на постоянном токе (сопротивления пост, току) и на переменном токе (активного сопротивления, емкости, индуктивности, взаимной индуктивности, частоты, угла потерь, добротности и др.) посредством мостовых схем. Мостовые измерения широко распространены также для электрических измерений неэлектрических величин при помощи датчиков — промежуточных преобразователей измеряемой величины в функционально связанный с ней параметр электрической цепи.

Мостовые измерения осуществляются с помощью измерит, мостов (мостовых установок), относящихся к категории приборов сравнения. В общем случае они основаны на применении некоторой электрической цепи, состоящей из нескольких известных и одного неизвестного (измеряемого) сопротивлений, питаемой одним источником и снабженной указывающим прибором.

Изменением известных сопротивлений эта цепь регулируется до достижения определенного, отмечаемого указателем, распределения напряжений на отдельных участках цепи. Очевидно, что заданному соотношению напряжений соответствует также определенное соотношение сопротивлений цепи, по которому можно вычислить неизвестное сопротивление, если остальные сопротивления известны.

Исторически первый, простейший и наиболее распространенный вариант мостовых измерений был реализован посредством четырехплечего уравновешенного моста , представляющего собой кольцевую цепь из 4 сопротивлений («плечи» моста), в которой источник питания и указатель включаются диагонально, к противолежащим вершинам, в виде «мостов» (рис. 2).

При соблюдении условия R1R3 = R2R4 (соответственно Z1Z3 = Z2Z4 на переменном токе) напряжение на выходе мостовой цепи (независимо от питающего напряжения) равно нулю (Ucd=0), т. е. мост «уравновешен», что отмечается нулевым указателем.

Состояние равновесия моста постоянного тока, соответствующее условию R1R3 = R2R4, может быть достигнуто регулировкой только одного переменного параметра и позволяет определить также только одно неизвестное сопротивление.

Для достижения комплексного условия равновесия на переменном токе Z1Z3 = Z2Z4, распадающегося при подстановке комплексных значений сопротивлений Z=R+jx на два самостоятельных условия, требуется регулировка не менее двух переменных параметров. При этом можно одновременно определять две составляющие комплексного сопротивления (например, L и R или L и Q, С и tg φ и т. д.).

Разновидностью четырехплечих мостов переменного тока являются мосты резонансные . Помимо четырехплечих применяются более сложные мостовые цепи — двойные мосты на постоянном токе (рис. 3) и многоплечие (шести- или семиплечие) — на переменном (например, рис. 4). Условия равновесия для этих цепей, естественно, отличаются от приведенных выше.

Мосты могут использоваться как в уравновешенном, так и в неуравновешенном режиме. В последнем результат измерения определяется без регулировки сопротивлений, непосредственно по току или напряжению на выходе мостовой цепи, которые являются функциями измеряемого сопротивления и напряжения источника питания (последнее должно быть стабильным). Выходной прибор при этом градуируется непосредственно в значениях измеряемой величины.

Мостовые измерения на переменном токе могут применяться еще в двух режимах: квазиуравновешенном и полууравновешенном. Последний характеризуется тем, что обычная четырехплечая цепь (рис. 2) регулируется при помощи только одного переменного параметра до получения минимального выходного напряжения (полное равновесие, т. е. Ucd =0, при котором требуется регулировка двух параметров, в данном случае недостижимо).

Момент достижения минимума напряжения Uс d может быть определен непосредственно обычным указателем на выходе цепи или более точно — косвенно — на основании, например, фазовых соотношений векторов напряжений мостовой цепи, имеющих место в момент полуравновесия.

Читайте также:  Как можно измерить расстояние между объектами

Во втором случае эксперимент и указывающая аппаратура аналогичны применяемым при квазиуравновешенном режиме. Составляющие измеряемого сопротивления определяются: одна — по значению переменного параметра в момент полуравновесия, другая — по напряжению на выходе моста. Напряжение питания необходимо стабилизировать.

Уравновешивание измерительных мостов может производиться как непосредственно человеком (мосты с ручной наводкой), так и при помощи автоматического устройства (автоматические измерительные мосты).

Мостовые измерения применяются как для измерения значений сопротивлений, так и для определения отклонений этих значений от заданного номинала. Они относятся к числу самых распространенных и совершенных методов измерения. Серийно выпускаемые мосты имеют классы точности от 0,02 до 5 на пост, токе и от 0,1 до 5 — на переменном.

Источник

Как работает мостовая схема измерения

Никакую книгу по электрическим измерениям нельзя было бы назвать полной без раздела о мостовых схемах. Эти гениальные схемы используют индикатор баланса для сравнения двух напряжений, точно так же как и лабораторные весы сравнивают две массы и указывают на то, что они равны. В отличие от «потенциометрических» схем, используемых для простого измерения неизвестного напряжения, мостовые схемы могут использоваться для измерения всех видов электрических величин, в том числе и сопротивлений.

Стандартная мостовая схема, часто называемая мостом Уитстона (Wheatstone bridge), изображена на рисунке 1.

Когда напряжение между точкой 1 и минусом батареи равно напряжению между точкой 2 и отрицательным выводом батареи, то индикатор баланса будет показывать ноль, и про такой мост говорят что он «сбалансирован». Состояние баланса моста полностью зависит от отношений Ra/Rb и R1/R2, и оно не зависит от напряжения питания. Для измерения сопротивлений с помощью моста Уитстона на место резисторов Ra или Rb устанавливается неизвестное сопротивление, в то время как остальные три резистора являются прецизионными и их номинал известен. Каждый из этих трёх резисторов может быть заменён сопротивлением другой величины или их номиналы могут быть скорректированы, что бы мост сбалансировался, и когда это произойдёт то величина сопротивления неизвестного резистора может быть определена из соотношения величин известных сопротивлений.

Для этого необходимо, что бы измерительная система имела набор переменных резисторов с точно известными значениями, которые могут служить эталонными стандартами. Например, если мост настроен на измерение сопротивления Rx (рисунок 2), то мы должны знать точное значение остальных трёх сопротивлений при сбалансированном мосте, что бы определить величину сопротивления Rx:

Каждое из четырёх сопротивлений в мостовой схеме называют плечом. Резистор, последовательно соединённый с неизвестным сопротивлением, Rx обычно называют реостатом моста (это будет сопротивление Ra на рисунке 2), а другие два сопротивления называют плечами отношений моста.

Точные и стабильные образцовые сопротивления к счастью, не сложно изготовить. В действительности они были одними из первых электрических «Стандартных» устройств, изготовленных в научных целях. На рисунке 3 приведена фотография старинного блока стандартных сопротивлений:

Рис. 3. Магазин образцовых сопротивлений

Стандарт сопротивлений, изображённый на рисунке 3, является переменным с дискретным шагом изменения сопротивления: величина сопротивления между клеммами может изменяться в зависимости от количества и положения медных вставок, вставленных в разъёмы.

Мосты Уитстона считаются превосходным средством измерения сопротивления среди схем различных омметров. Но в отличие от всех этих схем, являющихся нелинейными (и имеющих нелинейные шкалы), и связанные с этим погрешности измерений, мостовая схема является линейной (математика описания её работы основана на простых отношениях и пропорциях) и довольно точной.

Имея стандартные сопротивления достаточной точности и нуль-детектор с необходимой чувствительностью, достижимая точность измерения сопротивления может быть не хуже +-0,05% при использовании моста Уитстона. Это метод измерения сопротивления предпочитают использовать в калибровочных лабораториях из-за его высокой точности.

Существует много вариаций основной схемы моста Уитстона. Большинство мостов постоянного тока используются для измерения сопротивления, в то время как мосты переменного тока могут быть использованы для измерения различных электрических величин, таких как индуктивность, ёмкость и частота.

Читайте также:  Измерение звука для айфона

Интересным вариантом моста Уитстона является двойной мост Кельвина, используемый для измерения очень малых сопротивлений (обычно менее 1/10 Ома), его схема изображена на рисунке 4:

Рис. 4. Двойной мост Кельвина.
Ra и Rx являются низкоомными сопротивлениями.

Низкоомные резисторы на рисунке изображены толстой линией, так же как и проводники, соединяющие их с источником напряжения, обеспечивающим сильный ток. Принцип работы этого измерительного моста причудливой конфигурации, пожалуй, лучше всего понять, если начать объяснение принципа его работы со стандартного моста Уитстона, настроенного для измерения низкого сопротивления, этот мост развивался шаг за шагом до его нынешнего состояния в попытке преодолеть некоторые проблемы, возникшие в мосте Уитстона стандартной конфигурации.

Если бы мы использовали стандартный мост Уитстона для измерения небольших сопротивлений, то его схема бы выглядела примерно так (рисунок 5):

Когда нуль-детектор указывает нулевое напряжение, мы знаем, что мост сбалансирован и что соотношение Ra/Rx и RM/RN математически равны друг другу. Зная значения Ra, RM, and RN поэтому мы имеем все необходимые данные, чтобы найти величину Rx. Почти.

Имеется проблема в том, что соединения и соединительные провода между Ra и Rx обладают неким сопротивлением, и эти паразитные сопротивления могут быть существенными по сравнению с низким сопротивлением Ra и Rx. Эти паразитные сопротивления понизят реальное напряжение, учитывая большой ток, протекающий через них, и таким образом будут влиять на показания детектора нуля и на баланс моста (Рисунок 6):

Рис. 6.
Паразитное напряжение Eпров. ухудшает точность измерения Rx.

Так как мы не хотим измерять сопротивление этих паразитных проводников и сопротивление соединений, а нас интересует только измерение сопротивления Rx, то надо найти такой способ включения нуль-детектора, что бы на его показания не влияли падения напряжений, протекающего через эти сопротивления. Если мы присоединим нуль-детектор и плечи отношений RM/RN напрямую к выводам Ra и Rx, то это приведёт нас к такой реализации измерительного моста (Рисунок 7):

Рис. 7.
Теперь только два паразитных падения напряжения Eпров. являются частями цепи нуль-детектора.

Теперь два крайних падения напряжения Eпров. не оказывают воздействия на нуль-детектор и не влияют на точность измерений сопротивления Rx. Но два оставшихся падения напряжений Eпров. являются проблемой, так как проводник, соединяющий нижний по схеме вывод Ra и верхний по схеме вывод Rx теперь шунтирует оба падения напряжения и по нему будет течь существенный ток, который создаст на этом проводнике своё падение напряжения.

Зная, что левая часть нуль-детектора должна быть подключена к двум крайним выводам сопротивлений Ra и Rx, что бы не вносить ошибки, связанные с паразитными падениями напряжения Eпров. в цепи нуль-детектора, и что любой прямой провод, соединяющий выводы этих сопротивлений Ra и Rx будет сам нести значительный ток и создавать ещё большее паразитное падение напряжения, то единственным способом преодолеть эту проблему является создание соединения, имеющее существенное сопротивление, между нижнем по схеме выводом Ra и верхнем по схеме выводом Rx (Рисунок 8):

Справится с паразитными падениями напряжений между выводами сопротивлений Ra Rx можно путём изменения сопротивления двух новых резисторов таким образом, что бы отношение их величин было бы таким же, как и отношение величин сопротивлений в плече отношений, находящихся по схеме с правой стороны от нуль-детектора. Вот почему эти резисторы были помечены Rm и Rn в оригинальной схеме двойного моста Кельвина: для обозначения их соразмерности с сопротивлениями RM и RN (Рисунок 9):

Рис. 9. Двойной мост Кельвина
Ra и Rx являются низкоомными сопротивлениями.

При отношении Rm/Rn равном отношению RM/RN, резистор в плече реостата Ra регулируется до тех пор, пока нуль-индикатор не покажет, что мост сбалансирован, и тогда можно будет сказать, что отношение Ra/Rx равно отношению RM/RN, или просто найти Rx из следующего уравнения:

Полное уравнение баланса двойного моста Кельвина выглядит следующим образом (Rпров. — это сопротивление толстых соединительных проводов между низкоомным образцовым сопротивлением Ra и испытуемым сопротивлением Rx):

Читайте также:  Измерение времени реакции человека лабораторная работа

До тех пор пока соотношение между RM и RN равно отношению между Rm и Rn, уравнение баланса будет не сложнее чем у обычного моста Уитстона, при Rx/Ra равном RN/RM, так как последнее выражение в уравнении будет равно нулю, так что будет отсутствовать влияние всех сопротивлений, кроме Rx, Ra, RM, и RN.

Во многих двойных мостовых схемах Кельвина RM=Rm и RN=Rn. Однако чем меньше значения сопротивлений Rm и Rn, тем более чувствительным должен быть нуль-детектор, потому что там будет меньше последовательное сопротивление. Увеличение чувствительности детектора является полезным, так как оно позволит обнаруживать слабые дисбалансы, и таким образом мост можно будет сбалансировать с большой точностью. Таким образом некоторые высокоточные двойные мосты Кельвина используют сопротивления Rm и Rn со значениями в 100 раз меньше, чем значения сопротивлений RM и RN в другом плече. К сожалению, однако, чем ниже значения сопротивлений Rm и Rn, тем больший ток по ним будет течь, что увеличит влияние любого сопротивления в точке подключения Rm и Rn к Ra и Rx. Как вы можете видеть, высокая точность инструмента требует, чтобы учитывались все ошибки различных факторов, и часто лучшее, что может быть достигнуто является компромиссом минимизации двух или более различных видов ошибок.

  • ИТОГ:
  • Мостовые схемы используют чувствительный индикатор нуля для сравнения двух напряжений на их равенство.
  • Мост Уитстона (Wheatstone bridge) может быть использован для измерения сопротивлений путём сравнения сопротивления неизвестного номинала и образцового сопротивления с известной величиной, так же как с помощью лабораторных весов измеряют неизвестный вес путём сравнения его со стандартными грузами.
  • Двойной мост Кельвина является вариантом моста Уитстона для измерения очень малых сопротивлений. Его усложнение по сравнению с базовой схемой моста Уитстона является необходимым для избежания ошибок, вносимых паразитными сопротивлениями на пути тока между низкоомным образцовым сопротивлением и сопротивлением, величина которого измеряется.

Источник

Измерительный мост Уитстона

Мост Уитстона — это одна из наиболее часто используемых мостовых схем в контрольно-измерительных приборах.

Схема моста Уитстона часто используется в системах измерения температуры. В этих системах устройство, называемое термометр сопротивления или терморезистор, обычно помещается в одной из ветвей схемы мостика.

Принципиальная схема мостика Уитстона

Величина тока в мосте Уитстона определяется величиной разности сопротивлений: чем больше разность, тем больше будет течь ток; а если разность сопротивлений меняется, количество протекающего тока будет тоже меняться. Именно это свойство делает схему мосте Уитстона очень полезной в контрольно-измерительных устройствах и системах управления. Точные измерения переменных величин процессов достигаются тем, что переменные параметры процессов изменяют сопротивление в схеме мостика. Даже очень малые изменения величины сопротивления могут быть обнаружены при измерении тока, протекающего через мостик.

Принцип работы моста Уитстона

Схема моста Уитстона имеет два плеча сопротивления, каждое из которых содержит два резистора. Третья ветвь схемы — это соединение между двумя параллельными ветвями. Эта третья ветвь называется мостиком. Ток течет от отрицательной клеммы батарейки к верхней точке мостовой схемы. Затем, ток делится между двумя параллельными ветвями, причем количество тока, протекающее по каждой из ветвей, зависит от величины сопротивления в ветви. Наконец, ток возвращается к положительной клемме батарейки.

При равных величинах сопротивлений равное количество тока течет в каждой из ветвей. По мостику ток не течет, на что указывает нулевое положение измерителя. При этом условии о мостике говорят, что он уравновешен.

Уравновешенная схема мостика Уитстона

При неравных величинах сопротивления в ветвях, ток течет в схеме от ветви с большим сопротивлением к ветви с меньшим сопротивлением. Это будет верно, пока два верхних резистора фиксированы и равны по величине, как это имеет место в схемах мостика Уитстона, используемых в контрольно-измерительных системах. Измеритель на рисунке показывает, что ток в мостике течет слева направо.

Неуравновешенная схема мостика Уитстона

Источник