Как рассчитать полную погрешность прямого измерения

Как рассчитать полную погрешность прямого измерения

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Источник

Расчет погрешностей при прямых измерениях

Допустим, что мы проводим серию из n измерений одной и той же величины х. Из-за наличия случайных ошибок отдельные значения х1, х2, х3, хn неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

. (П.1)

где å – знак суммы, i – номер измерения, n – число измерений.

Итак, – значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р. Этот интервал называется доверительным интервалом. Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n

Так как каждое из значений хi получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

. (П.3)

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

100 %. (П.4)

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

мм.

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях tn,p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Ddсл

мм.

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

мм.

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет

%.

Источник

Полная погрешность прямых измерений

При измерениях может быть несколько источников погрешностей, поэтому важным является вопрос о правилах нахождения суммарной погрешности измерения по известным значениям погрешностей составляющих ее частей. В теории вероятностей показывается, что если погрешность измерений вызвана несколькими независимыми друг от друга случайными причинами, то полная абсолютная погрешность Δх измеряемой величины определяется путем суммирования квадратов складываемых погрешностей по формуле

, (6)

где ∆хсл – случайная погрешность (2) прямых измерений, ∆хпр – приборная погрешность.

Полная относительная погрешность измерения

, (7)

где εсл, εпр – случайная и приборная относительные погрешности.

При выполнении расчетов для всех составляющих полной погрешности выбирается одинаковое значение доверительной вероятности. Такая же вероятность будет и для полной абсолютной погрешности Δх. Из простых расчетов по формуле (7) следует, что если какая-либо из складываемых погрешностей в три и более раза меньше другой, то ее вклад в полную погрешность оказывается незначительным и такой погрешностью можно пренебречь.

Иногда при многократных измерениях получается одно и то же значение измеряемой физической величины. В этом случае случайная погрешность не превышает наименьшего значения, которое может быть измерено данным прибором, а именно – цены деления прибора, т.е. полная погрешность целиком определяется допустимой приборной погрешностью.

При обработке результатов прямых измерений предлагается следующий порядок операций.

1. Вычисляется среднее арифметическое значение из n результатов измерений

.

2. Определяются случайные отклонения

.

3. Предварительно определив по табл. 1 коэффициент Стьюдента для числа измерений n и доверительной вероятности Р = 0,95, рассчитывается случайная погрешность

.

4. Определяется приборная погрешность

.

5. Находится полная абсолютная погрешность результата измерений

.

6. Оценивается относительная погрешность результата измерений

.

7. Записывается окончательный результат в виде:

, .

Поскольку значения физических величин, полученные в результате измерений и обработки результатов измерений, имеют погрешности, они являются приближенными числами. Перед окончательной записью результата полученные при расчете числа следует округлить, т. е. уменьшить количество их значащих цифр. Так как найденные значения погрешностей также являются числами приближенными, то в соответствии с точностью методов обработки результатов измерений абсолютная погрешность определяется не более чем до двух первых значащих цифр. При простейших методах обработки в вычисленной абсолютной погрешности вторая цифра, как правило, неверна. Поэтому абсолютную погрешность округляют до одной значащей цифры. Например, ΔL = 0,467569 мм ≈ 0,5 мм;
ΔR = 7,679 Ом ≈ 8 Ом.

Исключением из этого правила являются погрешности, первая цифра в значении которых единица. Тогда во избежание грубой ошибки при округлении в абсолютной погрешности следует оставить две значащие цифры, а в относительной – одну. Например, ΔL = 0,167569 мм ≈ 0,17 мм; ΔR = 1,3791 Ом ≈ 1,4 Ом.

Знание погрешности измерений позволяет правильно записать окончательный ответ, оставив в нем только верные и одну или две сомнительные цифры. Последняя цифра результата и последняя значащая цифра его абсолютной погрешности должны принадлежать к одному и тому же десятичному разряду.

Окончательный результат измерений записывается вместе с погрешностью и доверительной вероятностью и должен иметь, например, следующий вид:

при округлении погрешности до двух цифр, и

при округлении погрешности до одной значащей цифры.

Источник

Оценка погрешности прямых измерений

Вычисляет погрешность прямых измерений для заданной выборки и доверительного интервала.

Измеряя линей­ные размеры предметов измерительными инстру­ментами : линейкой, штангенциркулем, микрометром, проводя измерения времени секундомером или силы электрического тока или величины напряжения соответствующими электроизмерительными приборами Вы проводите прямые измерения.

Погрешность измерений

Любое измерение проводится с определенной точностью, при этом измеренное значение всегда отличается от истинного, так как инструменты измерения, методики и органы чувств человека несовершенны. Поэтому важную роль играет оценка погрешности измерений, результат измерений с учетом погрешности записывается в виде: X ± ΔX, где ΔX — абсолютная погрешность измерений.

Случайные и систематичес­кие погрешности

Погрешности подразделяются на случайные и систематичес­кие.
Систематические погрешности остаются постоянными или закономерно меняются в процессе измерения. Например неточность прибора, неправильная его регулировка ведет к систематической погрешности. Если причина систематической погрешности известна, то чаще всего такую погрешность можно исключить.
Случайные погрешности вызваны различными случайными факторами, влияющими на точность измерений. Например, при измерении секундомером отрезков времени, случайные погрешности связаны с различным (случайным) временем реакции экспериментатора на события запускающие и останавливающие секундомер. Чтобы уменьшить влияние случайной погрешности необходимо проводить многократное измерение физической величины.
Калькулятор ниже вычисляет случайную погрешность выборки прямых измерений для заданного доверительного интервала. Немного теории можно найти сразу за калькулятором.

Расчет погрешностей непосредственных измерений.

Измерения

arrow_upward arrow_downwardЗначение

Измерения

Импортировать данные Ошибка импорта

В большинстве случаев результат измерения подчиняется нормальному закону распределения, поэтому истинное значение измерения будет равно пределу:

В случае ограниченного количества измерений, наиболее близким к истинному будет среднее арифметическое:

Согласно элементарной теории ошибок Гаусса случайную погрешность отдельного измерения характеризует так называемое среднеквадратическое отклонение:
, квадрат этой величины называется дисперсией. При увеличении этой величины возрастает разброс результатов измерений, т. е. увеличивается погрешность.

Для оценки погрешности всей серии измерений, вместо отдельного измерения надо найти среднюю квадратичную погрешность среднего арифметического, характеризующую отклонение от истинного значения искомой величины .
По закону сложения ошибок среднее арифметическое имеет меньшую ошибку, чем результат каждого отдельного измерения. Cред­няя квадратичная погрешность среднего арифметического равна:

Стандартная случайная погрешность Δх равна:
, где — коэффициент Стьюдента для заданной доверительной вероятности и числа степеней свободы k = n-1.
Коэффициент Стьюдента можно получить по таблице или воспользоваться нашим калькулятором для вычисления квантилей распределения Стьюдента: Квантильная функция распределения Стьюдента. Следует иметь в виду, что квантильная функция выдает значения одностороннего критерия Стьюдента. Значение двустороннего квантиля для заданной доверительно вероятности соответствует значению одностороннего квантиля для вероятности:

Источник

Научная электронная библиотека

Сибагатуллина А. М., Мазуркин П. М.,

2.6. Обработка результатов измерений

Обработка прямых измерений. Для характеристики большинства приборов часто используют понятие приведенной погрешности, равной абсолютной погрешности в процентах диапазона шкалы измерений. По приведенной погрешности приборы разделяются на классы точности. Класс точности указан на панели прибора.

Наибольшая инструментальная погрешность измеряется по формуле:

, (2.1)

где К – класс точности, А – наибольшее значение шкалы прибора.

Инструментальную погрешность невозможно уменьшить статистической обработкой отсчетов.

При наличии случайных погрешностей наблюдаемые значения измеряемой величины при многократных измерениях случайным образом рассеяны относительно ее истинного значения. В этом случае действительное значение находят как наиболее вероятное из серии отсчетов, а погрешность характеризуют шириной интервала, который с заданной вероятностью показывает истинное значение [44].

Наилучшей оценкой истинного значения величины Х является выборочное среднее значение

, (2.2)

где – отсчет величины Х, – число отсчетов.

Для оценки разброса отсчетов при измерении используется выборочное среднее квадратическое отклонение отсчетов

. (2.3)

Выборочное среднее является случайной величиной и его разброс относительно истинного значения измеряемой величины оценивается выборочным средним квадратическим отклонением среднего значения

. (2.4)

Доверительным интервалом называется интервал , который с заданной степенью достоверности включает в себя истинное значение измеряемой величины.

Доверительной вероятностью (надежностью) результата серии наблюдений называется вероятность , с которой доверительный интервал включает истинное значение измеряемой величины.

Случайную составляющую погрешности принято выражать как полуширину доверительного интервала. Случайная составляющая погрешности многократных измерений

, (2.5)

где – безразмерный коэффициент доверия (коэффициент Стьюдента).

Чем больше доверительная вероятность, тем надежнее оценка интервала и, вместе с тем, шире его границы.

Полная абсолютная погрешность прямых измерений равна квадратической сумме ее составляющих: инструментальной – и случайной –

. (2.6)

Полная относительная погрешность прямых измерений равна отношению полной абсолютной погрешности к выборочному среднему значению

. (2.7)

Обработка косвенных измерений [44]. Расчет погрешностей косвенных измерений осуществляется по алгоритму, использующему сложение абсолютных величин погрешностей.

Пусть – функциональная зависимость между измеряемой величиной и величинами , значения которых найдены прямыми измерениями. Действительное значение определяется как:

. (2.8)

Вычисляем относительные погрешности аргументов. Затем определяем абсолютную и относительную погрешности функции

(2.9)

— для относительной погрешности

; (2.10)

— для абсолютной погрешности

. (2.11)

Оценка токсического действия тестируемой пробы воды. Оценка токсического действия тестируемой пробы воды делается на основании достоверности различий между показателями прироста численности клеток водорослей в контроле и в опыте. При этом вычисляют [14]:

– средние арифметические величины прироста численности клеток – Xi и X (в контроле и опыте);

– среднее квадратичное отклонение по формуле (2.3);

– ошибку среднего арифметического (X):

Td – критерий достоверности различий двух величин:

; (2.12)

, (2.13)

где xk и xо – сравниваемые средние величины (в контроле и опыте),

Sk 2 и So 2 – квадраты ошибок средних в контроле и опыте.

Td рассчитывают для каждой тестируемой пробы и сравнивают с табличной величиной Tst – стандартным значением критерия Стьюдента. В нашем случае для его определения принимаем уровень значимости р = 0,05 (95%) и степень свободы = (n1 + n2 – 2), т. е. (3 + 3 – 2) = 4. Tst при степени свободы 4 равно 2,78.

Если Td ≥ Tst, то различие между контролем и опытом достоверно – тестируемая вода загрязнена.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector