Меню

Как рассчитать приведенную погрешность измерения



Погрешности измерений

Общие сведения об измерениях. Погрешности измерений и средств измерений

Общие сведения об измерениях

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств. Под измерением понимается процесс экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы классифицируются по различным признакам. Например, измерительные приборы можно построить на основе аналоговой схемотехники или цифровой. Соответственно их делят на аналоговые и цифровые. Ряд приборов, выпускаемых промышленностью, допускают только отсчитывание показаний. Эти приборы называются показывающими. Измерительные приборы, в которых предусмотрена регистрация показаний, носят название регистрирующих.

Погрешности измерений

Погрешность является одной из основных характеристик средств измерений.

Под погрешностью электроизмерительных приборов, измерительных преобразователей и измерительных систем понимается отклонение их выходного сигнала от истинного значения входного сигнала.

Абсолютная погрешность Δa прибора есть разность между показанием прибора ах и истинным значением а измеряемой величины, т.е.

Абсолютная погрешность, взятая с обратным знаком, называется поправкой.

Относительная погрешность δ представляет собой отношение абсолютной погрешности к истинному значению измеряемой величины. Относительная погрешность, обычно выражаемая в процентах, равна

Приведенная погрешность γП есть выраженное в процентах отношение абсолютной погрешности Δa к нормирующему значению апр

Нормирующее значение – условно принятое значение, могущее быть равным конечному значению диапазона измерений (предельному значению шкалы прибора).

Погрешности средств измерений

Класс точности прибора указывают просто числом предпочтительного рода, например, 0,05. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Класс точности прибора (например, амперметра) дается выражением

При установлении классов точности приборов нормируется приведенная погрешность, а не относительная. Причина этого заключается в том, что относительная погрешность по мере уменьшения значений измеряемой величины увеличивается.

По ГОСТ 8.401-80 в качестве значений класса точности прибора используется отвлеченное положительное число из ряда:

В интервале от 1 до 100 можно использовать в качестве значений класса точности числа:

(α = 0) 1; 1,5; 2; 2,5; 4; 5; 6;

(α = 1) 10; 15; 20; 25; 40; 50; 60.

Т.е. четырнадцать чисел 1; 1,5; 2; 2,5; 4; 5; 6; 10; 15; 20; 25; 40; 50; 60.

Необходимо отметить, классы точности от 6,0 и выше считаются очень низкими.

Примеры решения задач

Задача №1

Определить для вольтметра с пределом измерения 30 В класса точности 0,5 относительную погрешность для точек 5, 10, 15, 20, 25 и 30 В и наибольшую абсолютную погрешность прибора.

Решение

  1. Класс точности указывают просто числом предпочтительного рода, например, 0,5. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Приведенная погрешность (выраженное в процентах отношение абсолютной погрешности к нормирующему значению)

постоянна и равна классу точности прибора.

Относительная погрешность однократного измерения (выраженное в процентах отношение абсолютной погрешности к истинному значению измеряемой величины)

уменьшается к значению класса точности прибора с ростом измеренного значения к предельному значению шкалы прибора.

Абсолютная погрешность однократного измерения

постоянна на всех отметках рабочей части шкалы прибора.

По условию задачи: Uизм = Ui = 5, 10, 15, 20, 25 и 30 В – измеренное значение электрической величины; Uпр = 30 В – предел шкалы вольтметра.

Наибольшая абсолютная погрешность вольтметра

Источник

Приведенная погрешность

— погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.

Вычисляется по формуле :

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

  • если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0. 100), то Xn определяется равным верхнему пределу измерений (Xn=100);
  • если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30. 100, Xn=Xmax-Xmin=100-30=70);
  • если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50. +50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в

Приведенная погрешность пропорциональна абсолютной погрешности, поэтому, если абсолютная погрешность измерительного прибора постоянна во всем диапазон измерения, то приведенная будет также постоянной. Следовательно она характеризует точность измерительного прибора независимо от значения измеряемого параметра и ее считают основной метрологической характеристикой измерительного прибора.

Приведенная погрешность изменяется под действием изменения окружающей температуры, давления, вибрации и т. д. В связи с этим для каждого прибора регламентируют нормальные условия эксплуатации (температуру, влажность, напряжение питания и т.д)

Источник

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

(1.2), где X — результат измерения; Х — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

  • первые — погрешностью градуировки шкалы или ее небольшим сдвигом;
  • вторые — старением элементов средства измерения.

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

(1.8)

Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные .

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Погрешности средств измерений подразделяются также на статические и динамические .

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Источник

Расчет погрешностей средств измерений

Погрешность результата измерений в значительной мере зави­сит от погрешности средств измерений, являющейся важнейшей составляющей, от которой зависит качество измерений.

Технические характеристики, оказывающие влияние на результаты и на по­грешности измерений, называются метрологическими характерис­тиками средств измерений. В зависимости от специфики и назначения средств измерений, нормируются различные наборы или комплекты метрологических характеристик. В соответствии со стандар­том метрологические характеристики средств измерений исполь­зуются для определения результата измерений и расчетной оценки характеристик инструментальной составляющей погрешности из­мерений, расчета метрологических характеристик каналов измерительных систем и оптимального выбора средств измерений.

Инструментальная погрешность измерения – погрешность из-за несовершенства средств измерений. Эта погрешность в свою очередь обычно подразделяется на основную погрешность средств измерения и дополнительную.

Основная погрешность средства измерений – это погрешность в условиях, принятых за нормальные, т.е. при нормальных значениях всех величин, влияющих на результат измерения (температуры, влажности, напряжения питания и др.):

Δ=а или Δ=(а+bх), (1.1)

где Δ и хвыражаются в единицах измеряемой величины.

Абсолютной погрешностью прибора называется разность между показанием прибора и действительным значением измеряемой величины:

(1.2)

Поправкой прибора называется разность между действительным значением измеряемой величины и показанием прибора. Численно поправка равна абсолютной погрешности, взятой с обратным знаком:

=-Δх. (1.3)

Дополнительная погрешность возникает при отличии значений влияющих величин от нормальных. Обычно различают отдельные составляющие дополнительной погрешности, например, температурную погрешность, погрешность из-за изменения напряжения питания и т.п.

Относительная погрешностьсредств измерений — погрешность средств измерений, выраженная отношением абсолютной погрешности к действительному значению физической величины, в преде­лах диапазона измерений.

. (1.4)

где Δx — абсолютная погрешность;

xп — показания прибора.

Приведенная погрешностьсредств измерений — относительная погрешность, определяемая отношением абсолютной погрешности измерительного прибора к нормирующему значению. Нормирующее значение — это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы и т. д. Например, для милливольтметра термоэлектрического термометра с пределами измерений 200 и 600°С нормирующее значение
xN = 400 0 С. Приведенную погрешность можно определить по формуле

. (1.5)

где xn нормирующее значение.

Например, значения абсолютной, относительной, приведенной погрешности потенциометра с верхним пределом измерений 150°С при хп=120°C, действительным значением измеряемой температуры Х=120,6°С и нормирующим значением верхнего предела из­мерений xn=150°С будут, соответственно, составлять Δxп = — 0,6°С, δ= — 0,5 %, γ= — 0,4 %.

Предел допускаемой погрешности средств измерений — наибольшая погрешность средств измерений, при которой оно может быть признано годным и допущено к применению. В случае превышения установленного предела средство измерений остается непригодным к применению.

Пределы допускаемой приведенной основной погрешности, определяемой по формуле (1.5),

, (1.6)

где p отвлеченное положительное число, выбираемое из ряда: 1,0·10 n ; 1,5·10 n ; 1,6·10 n ; 2·10 n ; 2,5·10 n ; 3·10 n ; 4·10 n ; 5·10 n ; 6·10 n (где п=1; 0; -1; -2 и т. д.).

Для средств измерений, используемых в повседневной практике, принято деление по точности на классы.

Класс точности средств измерений обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами средств измерений, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений.

Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполненных с помощью этих средств.

Классы точности устанавливаются стандартами, содержащими технические требования к средствам измерений, подразделяемым по точности. Средства измерений должны удовлетворять требованиям, предъявляемым к метрологическим характеристикам, установленным для присвоенного им класса точности как при выпуске их из производства, так и в процессе эксплуатации.

Пределы допускаемых дополнительных погрешностей устанавливают в виде дольного значения предела допускаемой основной погрешности для всей рабочей области влияющей величины или ее интервала, отношения предела допускаемой дополнительной погрешности, соответствующей интервалу величины, к этому интервалу, либо в виде зависимости предела, допускаемой относительной погрешности от номинальной или пре­дельной функции влияния. Пределы всех основных и дополнительных допускаемых погрешностей выражаются не более чем двумя значащими цифрами, причем погрешность округления при вычислении пределов не должна превышать 5 %.

Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений, приводятся в нормативно-технических документах.

Пример

Десять одинаковых осветительных ламп соединены параллельно. Ток каждой лампы Iл = 0,3 А. Определить абсолютную и отно­сительную погрешности амперметра, включенного в неразвет­вленную часть цепи, если его показания I1 = 3,3 А.

1. Ток в неразветвленной части цепи

.

2. Абсолютная погрешность

.

3. Относительная погрешность

.

Задачи

1. Температура в термостате измерялась техническим термометром со шкалой 0…500°С, имеющим пределы допускаемой основной погрешности ±4°С. Показания термометра составили 346 °С. Одновременно с техническим термометром в термостат был погружен лабораторный термометр, имеющий свидетельство о поверке. Показания лабораторного термометра составили 352°С, поправка по свидетельству составляет — 1°С. Определите, выходит ли за пределы допускаемой основной погрешности действительное значение погрешности показаний технического термометра.

2. Было проведено однократное измерение термо-ЭДС автоматическим потенциометром класса 0,5 градуировки ХК со шкалой 200…600°С. Указатель стоит на отметке 550°С. Оцените максимальную относительную погрешность измерения термо-ЭДС потенциометром на отметке 550°С. Условия работы нормальные.

3. Определить относительную погрешность измерения напряжения 100 В вольтметром класса точности 2,5 на номинальное напряжение 250 В.

4. Амперметр с верхним пределом измерения 10А показал ток 5,3 А при его действительном значении, равном 5,23 А. Определить абсолютную, относительную и относительную приведенную погрешности амперметра, а также абсолютную поправку.

5. При поверке амперметра с пределом измерения 5А в точках шкалы: 1; 2; 3; 4 и 5А получены следующие показания образцового прибора: 0,95; 2,06; 3,05; 4,07 и 4,95 А. Определить абсолютные, относительные и относительные приведенные погрешности в каждой точке шкалы и класс точности амперметра.

6. При поверке технического амперметра получены следующие показания приборов: поверяемый амперметр 1—2—3—4—5—4—3—2—1А,

образцовый ход вверх l,2—2,2—2,9—3,8—4,8 А

амперметр ход вниз 4,8—3,9—2,9—2,3—1,1 А.

Найти абсолютную и относительную приведенную погрешности, а также вариации показаний прибора. Определить, к какому классу точности его можно отнести.

7. Поверка вольтметра методом сравнения с показаниями образцового прибора дала следующие результаты:

прибор, V прибор, V

при увеличении при уменьшении

Определить наибольшую относительную приведенную погрешность и класс точности.

8. Определить относительную погрешность измерения напряжения, если показание вольтметра класса 1,0 с пределом измерения 300 В составило 75 В.

9. Определить абсолютную и относительную погрешности измерений, если вольтметр с пределом измерений 300 В класса 2,5 показывает 100 В.

10. Для измерения напряжения используются два вольтметра: V1(Uном=30 B; Кv= 2,5) и V2(Uном=150 В;Kv=1,0). Определить, какой вольтметр измеряет напряжение точнее, если первый показал 29,5 В, а другой — 30 В.

11. В цепь током 15 А включены три амперметра со следующими параметрами: класса точности 1,0 со шкалой на 50 А, класса 1,5 на 30 A и класса 2,5 на 20 А. Определить, какой из амперметров обеспечит большую точность измерения тока в цепи.

12. Имеются три вольтметра: класса 1,0 номинальным напряжением 300 В класса 1,5 на 250 В и класса 2,5 на 150 В. Определить, какой из вольтметров обеспечит большую точность измерения напряжения 130 В.

13. Показания амперметра I1= 20 А, его верхний предел Iн = 50 А; показания образцового прибора, включенного последовательно, I = 20,5 А. Определить относительную и приведенную от­носительную погрешности амперметра.

14. Определить относительную погрешность измерения тока 10 А амперметром с Iн = 30 А класса точности 1,5.

15. При измерении мощности ваттметром класса точности 0,5, рассчитанным на номинальную мощность Рн = 500 Вт записано показание Р1=150 Вт. Найти пределы, между которыми заключено действительное значение измеряемой мощности.

16. Сопротивления включены по схеме, изображенной на рис.1.1. Ток в неразветвленной части цепи I=12 А, в сопротивлениях I1=3 А; I2=5А. Чему равны абсолютная и относительная погрешности амперметра, указанного на схеме, если его показания I3=3,8 А?

R1

Рис.1.1. Схема измерения тока

Источник

Читайте также:  Единицы измерения при списании материалов