Меню

Как вычислять погрешности при косвенных измерениях



Погрешности косвенных измерений

Теперь необходимо рассмотреть вопрос о том, как находить погрешность физической величины U, которая определяется путем косвенных измерений. Общий вид уравнения измерения

где Хj – различные физические величины, которые получены экспериментатором путем прямых измерений, или физические константы, известные с заданной точностью. В формуле они являются аргументами функции.

В практике измерений широко используют два способа расчета погрешности косвенных измерений. Оба способа дают практически одинаковый результат.

Способ 1.Сначала находится абсолютная D, а затем относительная d погрешности. Этот способ рекомендуется для таких уравнений измерения, которые содержат суммы и разности аргументов.

Общая формула для расчета абсолютной погрешности при косвенных измерениях физической величины Y для произвольного вида f функции имеет вид:

(1.5)

где частные производные функции Y=f(Х1, Х2, … , Хn) по аргументу Хj,

общая погрешность прямых измерений величины Хj.

Для нахождения относительной погрешности нужно прежде всего найти среднее значение величины Y. Для этого в уравнение измерения (1.4) надо подставить средние арифметические значения величин Xj.

То есть среднее значение величины Y равно: . Теперь легко найти относительную погрешность: .

Пример: найти погрешность измерения объёма V цилиндра. Высоту h и диаметр D цилиндра считаем определёнными путём прямых измерений, причём пусть количество измерений n=10.

Формула для расчета объёма цилиндра, то есть уравнение измерения имеет вид:

Пусть при Р=0,68;

при Р=0,68.

Тогда, подставляя в формулу (1.5) средние значения, найдём:

Погрешность DV в данном примере зависит, как видно, в основном от погрешности измерения диаметра.

Средний объём равен: , относительная погрешность dV равна:

, или dV=19%.

Окончательный результат после округления:

Способ 2. Этот способ определения погрешности косвенных измерений отличается от первого способа меньшими математическими трудностями, поэтому его чаще используют.

В начале находят относительную погрешность d, и только затем абсолютную D. Особенно удобен этот способ, если уравнение измерения содержит только произведения и отношения аргументов.

Порядок действий можно рассмотреть на том же конкретном примере — определение погрешности при измерении объёма цилиндра

.

Все численные значения входящих в формулу величин сохраним теми же, что и при расчетах по способу 1.

Пусть мм, ; при Р=0,68;

; при Р=0,68.

-погрешность округления числа p (см. рис. 1.1)

При использовании способа 2 следует действовать так:

1) прологарифмировать уравнение измерения (берём натуральный логарифм)

.

найти дифференциалы от левой и правой частей, считая независимыми переменными,

;

2) заменить дифференциал каждой величины на абсолютную погрешность этой же величины, а знаки “минус”, если же они есть перед погрешностями на “плюс”:

;

3) казалось бы, что с помощью этой формулы уже можно дать оценку для относительной погрешности , однако это не так. Требуется так оценить погрешность, чтобы доверительная вероятность этой оценки совпадала с доверительными вероятностями оценки погрешностей тех членов, которые стоят в правой части формулы. Для этого, чтобы это условие выполнялось, нужно все члены последней формулы возвести в квадрат, а затем извлечь корень квадратный из обеих частей уравнения:

Читайте также:  Косвенное измерение это физика

.

Или в других обозначениях относительная погрешность объёма равна:

,

причём вероятность этой оценки погрешности объёма будет совпадать с вероятностью оценки погрешностей входящих в подкоренное выражение членов:

Сделав вычисления, убедимся, что результат совпадает с оценкой по способу 1:

Теперь, зная относительную погрешность, находим абсолютную:

Окончательный результат после округления:

V = (47 ± 9) мм 3 , dV = 19%, P=0,68.

Контрольные вопросы

1. В чём заключается задача физических измерений?

2. Какие типы измерений различают?

3. Как классифицируют погрешности измерений?

4. Что такое абсолютная и относительная погрешности?

5. Что такое промахи, систематические и случайные погрешности?

6. Как оценить систематическую погрешность?

7. Что такое среднее арифметическое значение измеренной величины?

8. Как оценить величину случайной погрешности, как она связана со средним квадратичным отклонением?

9. Чему равна вероятность обнаружения истинного значение измеренной величины в интервале от Хср — s до Хср + s?

10. Если в качестве оценки для случайной погрешности выбрать величину 2s или 3s, то с какой вероятностью истинное значение будет попадать в определённые этими оценками интервалы?

11. Как суммировать погрешности и когда это нужно делать?

12. Как округлить абсолютную погрешность и среднее значение результата измерения?

13. Какие способы существуют для оценки погрешностей при косвенных измерениях? Как при этом действовать?

14. Что нужно записать в качестве результата измерения? Какие величины указать?

Дата добавления: 2015-02-19 ; просмотров: 3913 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Погрешность косвенного измерения

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку косвенных измерений.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть физическая величина j(x, y, z, . ) является функцией ряда независимых аргументов x, y, z, . , каждый из которых может быть определен экспериментально. Путем прямых измерений определяются величины и оцениваются их средние абсолютные погрешности или средние квадратичные погрешности .

Средняя абсолютная погрешность косвенных измерений физической величины j вычисляется по формуле

Читайте также:  Роль денег как средств измерения

где — частные производные от φ по x, y, z, вычисленные для средних значений соответствующих аргументов.

Так как в формуле использованы абсолютные величины всех членов суммы, то выражение для оценивает максимальную погрешность измерения функции при заданных максимальных ошибках независимых переменных.

Средняя квадратичная погрешность косвенных измерений физической величины j

Относительная максимальная погрешность косвенных измерений физической величины j

где и т. д.

Аналогично можно записать относительную среднюю квадратичную погрешность косвенных измерений j

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность . Для этого (в случае средней абсолютной погрешности) надо проделать следующее.

1. Прологарифмировать выражение для косвенного измерения физической величины.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Формально заменить значки дифференциалов на значки абсолютной погрешности D.

Затем, зная e, можно вычислить абсолютную погрешность Dj по формуле

Пример 1.Вывод формулы для вычисления максимальной относительной погрешности косвенных измерений объёма цилиндра.

Выражение для косвенного измерения физической величины (исходная формула)

Величина диаметра D и высоты цилиндра h измеряются непосредственно приборами с погрешностями прямых измерений соответственноD D и Dh.

Прологарифмируем исходную формулу и получим

Продифференцируем полученное уравнение

Заменив значки дифференциалов на значки абсолютной погрешности D, окончательно получим формулу для расчёта максимальной относительной погрешности косвенных измерений объёма цилиндра

| следующая лекция ==>
Учет систематических ошибок | РАБОТА 1. ОЦЕНКА ТОЧНОСТИ ПРЯМЫХ И КОСВЕННЫХ ИЗМЕРЕНИЙ.

Дата добавления: 2017-10-09 ; просмотров: 2062 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Расчет погрешностей при косвенных измерениях

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

, (П.5)

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

, (П.6)

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X1, X2,. , Xn – прямо измеряемые величины, в формуле (П.5) это m, d, и h.

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X1, X2, . , Xn всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

Читайте также:  Шкала измерения уровня сигнала

1) получить средние значения каждой прямо измеряемой величины áX1ñ, áX2ñ, …, áXnñ;

2) получить среднее значение косвенно измеряемой величины áYñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX1, DX2, . DXn, воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

5) рассчитать относительную погрешность измерения ;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

, (П.7)

где ¶Y¤¶X1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X1, X2, …, Xn (когда берется частная производная, например по X1, то все остальные величины Xi в формуле считаются постоянными), DXi– абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y, получим

.

Но так как , то можно записать

. (П.8)

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:

ln r = ln 4 + ln m – ln p –2 ln d – ln h,

а потом уже воспользуемся формулой (П.8) и получим, что

. (П.9)

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Yi. Далее, принимая каждое из значений Yi (где i – номер опыта) за результат прямого измерения, вычисляют áYñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

, (П.10)

где m – показатель степени, u – единицы измерения величины Y.

Источник