Меню

Какая характеристика определяет количество измерений входного звукового сигнала за 1 секунду это



Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество бит, отводимое на один звуковой сигнал, называют глубиной кодирования звука.

Современные звуковые карты обеспечивают 16-, 32- или 64-битную глубину кодирования звука.

При кодировании звуковой информации непрерывный сигнал заменяется дискретным, то есть превращается в последовательность электрических импульсов (двоичных нулей и единиц).

Процесс перевода звуковых сигналов от непрерывной формы представления к дискретной, цифровой форме называют оцифровкой.

Важной характеристикой при кодировании звука является частота дискретизации — количество измерений уровней сигнала за 1секунду:

— 1 (одно) измерение в секунду соответствует частоте 1 Гц;

— 1000 измерений в секунду соответствует частоте 1 кГц.

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество измерений может лежать в диапазоне от 8 кГц до 48 кГц (от частоты радиотрансляции до частоты, соответствующей качеству звучания музыкальных носителей).

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48000раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Оценить информационный объём моноаудиофайла (V) можно следующим образом: V = N⋅f⋅k, где N — общая длительность звучания (секунд), f — частота дискретизации (Гц), k — глубина кодирования (бит).

Например, при длительности звучания 1 минуту и среднем качестве звука (16 бит, 24 кГц):

V = 60⋅24000⋅16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Например, оценим информационный объём цифрового стереозвукового файла длительностью звучания 1секунда при среднем качестве звука (16 битов, 24000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1секунду и умножить на 2 (стереозвук):

V=16 бит ⋅24000⋅2 = 768000 бит = 96000 байт = 93,75 Кбайт.

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table.

Метод FM (FrequencyModulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП).

Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП.

Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Читайте также:  Методика измерения освещенности люксметром тка

Формат МРЗ (MPEG-1 AudioLayer 3) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.

Источник

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество бит, отводимое на один звуковой сигнал, называют глубиной кодирования звука.

Современные звуковые карты обеспечивают 16-, 32- или 64-битную глубину кодирования звука.

При кодировании звуковой информации непрерывный сигнал заменяется дискретным, то есть превращается в последовательность электрических импульсов (двоичных нулей и единиц).

Процесс перевода звуковых сигналов от непрерывной формы представления к дискретной, цифровой форме называют оцифровкой.

Важной характеристикой при кодировании звука является частота дискретизации — количество измерений уровней сигнала за 1секунду:

— 1 (одно) измерение в секунду соответствует частоте 1 Гц;

— 1000 измерений в секунду соответствует частоте 1 кГц.

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество измерений может лежать в диапазоне от 8 кГц до 48 кГц (от частоты радиотрансляции до частоты, соответствующей качеству звучания музыкальных носителей).

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48000раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Оценить информационный объём моноаудиофайла (V) можно следующим образом: V = N⋅f⋅k, где N — общая длительность звучания (секунд), f — частота дискретизации (Гц), k — глубина кодирования (бит).

Например, при длительности звучания 1 минуту и среднем качестве звука (16 бит, 24 кГц):

V = 60⋅24000⋅16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Например, оценим информационный объём цифрового стереозвукового файла длительностью звучания 1секунда при среднем качестве звука (16 битов, 24000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1секунду и умножить на 2 (стереозвук):

V=16 бит ⋅24000⋅2 = 768000 бит = 96000 байт = 93,75 Кбайт.

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table.

Метод FM (FrequencyModulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП).

Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП.

Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Читайте также:  Измерения по фен шую

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Формат МРЗ (MPEG-1 AudioLayer 3) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.

Источник

какая характеристика определяет количество измерений входного звукового сигнала за 1 секунду?
1. Длительность звучания
2. Разрядность дискретизации
3. Частота дискретизации
4. Объем памяти ​

Ответы

ответ будет 1) Длительность звучания

по виду информационные технологии подразделяются на:

1. информационная технология обработки данных предназначена для решения хорошо структурированных , по которым имеются необходимые входные данные и известны алгоритмы и другие стандартные процедуры их обработки. она применяется на уровне операционной (исполнительской) деятельности персонала невысокой квалификации в целях автоматизации некоторых рутинных постоянно повторяющихся операций труда.

2. информационной технологии направлена на удовлетворение информационных потребностей всех без исключения сотрудников организации, имеющих дело с принятием решений. она может быть полезна на любом уровне . эта технология ориентирована на работу в среде информационной системы и используется при худшей структурированности решаемых .

3. информационная технология автоматизированного офиса– организация и поддержка коммуникационных процессов как внутри организации, так и с внешней средой на базе компьютерных сетей и других современных средств передачи и работы с информацией.

4. информационная технология поддержки принятия решений– это качественно новый метод организации взаимодействия человека и компьютера. выработка решения, что является основной целью этой технологии, происходит в результате итерационного процесса, в котором участвуют:

Источник

Кодирование звуковой информации. Подготовка к ЕГЭ

Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

1. Просмотр презентации по теме с комментариями учителя. Приложение 1

Материал презентации: Кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Аудиоадаптер (звуковая плата) — специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

— это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

Читайте также:  Правила разработки методик измерений

Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:

N = 2 I = 2 16 = 65536, где I — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл — файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник [1]

4. Решение задач

Учебник [1], показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

V=1 ×16 × 48 000 × 2=

1536000 бит/8 =192000 байт/1024 = 187,5 Кбайт

Задача (самостоятельно). Учебник [1], показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

10 × 8 × 22 050 бит/8 = 220500 байт/1024 = 215,332/1024 Кбайт = 0,21 Мбайт

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

V=2×60 ×16 × 44,1 × 1=

(120 × 16 × 44 010) бит = 84672000 бит/8= 10584000байт/1024 = 10335,9375 Кбайт/1024 = 10,09 Мбайт

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

V= T ×I × H × 1; I × H= V / T

I × H= 2,6 Мб/1 мин. = 2,6×1024×1024×8 бит/ 60 сек=21810380,8/60=

Если I=8 ,бит, то H=44,1 кГц.

Если I=16 бит, то H=22,05 кГц.

Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации — 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске — 0,1 Гб, разрядность зву­ковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

№ 92. 124,8 секунды.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти — 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11 кГц, разрядность аудиоадаптера — 8. Длительность звучания равна 60,5 с.

1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера )

2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.

Источник