Какая единица является основной единицей измерения электрического сопротивления

Единица измерения сопротивления

В соответствии с законом Ома для участка цепи сила тока ($I$) на рассматриваемом участке пропорциональна напряжению ($U$) на концах участка:

где $R$ — физическая величина, называемая электрическим сопротивлением, характеризует участок цепи. Из закона Ома (1) следует, что:

Ом — единица измерения сопротивления в системе СИ

Из формулы (2) следует, что сопротивление численно равно отношению напряжения на концах участка к силе тока, который в нем течет. Единицу измерения сопротивления можно определить как:

Единица измерения электрического сопротивления в Международной системе единиц (СИ) имеет собственное название — ом (Ом). Один ом равен электрическому сопротивлению участка цепи, в котором течет ток силой 1 ампер и вызывает на концах участка падение напряжения равное одному вольту. Единица сопротивления названа в честь немецкого ученого Г. Ома.

Ом — единица сопротивления, является производной единицей в системе СИ, через основные единицы, она выражается как:

1 Ом — это довольно малая величина сопротивления, поэтому на практике часто используют стандартные для системы СИ десятичные кратные приставки, например, кОм (килоом): 1кОм=1000 Ом; МОм (мегаом): $1\ МОм=<10>^6Ом.$

Единица измерения сопротивления в системе СГС

В системе СГС (сантиметр, грамм, секунда) единица сопротивления не имеет названия, вернее она называется единица сопротивления СГС, обозначается как $ед.<СГС>_R$. Единица электрического сопротивления в СГС ($1\ ед.<СГС>_R$) равна сопротивлению участка цепи, при котором постоянный ток силой 1 единица СГС тока (1 $ед.\ <СГС>_I$), вызывает падение напряжения 1 СГС напряжения (1$\ ед.\ <СГС>_U$). При этом:

Между омом и единицей сопротивления в СГС следующее соотношения:

В расширениях к системе СГС единицы сопротивление называют: статом. Статом — единица измерения сопротивления в системе СГСЭ и системе Гаусса. Это сопротивление проводника у которого при напряжении на концах в один статвольт течет ток один статампер. Обозначают статом как $1stat<\mathbf \Omega >$\textbf<.>\textit<>

В другом расширении системы СГС, СГСМ сопротивление измеряют в абомах($ab<\mathbf \Omega >$). Абом соотносится с омом как:

В системе СГСМ выполняется равенство:

где $abV$ — абвольт; $abA$ — абампер.

Примеры задач с решением

Задание. Чему равно добавочное сопротивление ($R$), которое подключают к вольтметру для того, чтобы предельная величина измеряемого напряжения была увеличена в 4 раза, если внутреннее сопротивление самого вольтметра равно $R_V=5\ кОм$. Ответ запишите в омах.\textit<>

Решение. Схема подключения дополнительного сопротивления к вольтметру с целью увеличения напряжения, которое он может измерять указана на рис.1.

К вольтметру последовательно подключают дополнительное сопротивление. Сила тока на этом участке цепи остается без изменения, обозначим ее $I$, используя закон Ома, мы можем записать, что падение напряжения на вольтметре (рис.1) равно:

При этом падение напряжения на дополнительном сопротивлении составляет:

Падение напряжения на концах соединения AB. составляет:

так как по условию падение напряжения после подключения дополнительного сопротивления к вольтметру должно быть рано $4U_V$ (где $U_V=IR_V$ — падение напряжения на вольтметре при отсутствии дополнительного сопротивления).

Вычислим величину дополнительного сопротивления:

\[R=3\cdot 5=15\ \left(кОм\right).\]

Ответ. $R=15000$ Ом

Задание. Как можно найти сопротивление участка цепи, если известно, что при протекании по нему постоянного тока величины $I$, его мощность составляла величину $P$? В каких единицах будет выражаться сопротивление данного участка цепи?

Решение. Мощность постоянного тока величины$\ I$, который течет на участке цепи с сопротивлением $R,$ находят, используя формулу:

Из равенства (2.1) не составляет труда выразить сопротивление:

Мощность измеряется в ваттах ($\left[P\right]=Вт$), сила тока в амперах ($\left[I\right]=A$). Ватт является производной единицей СИ, посмотрим, какой комбинацией единиц основных величин его можно заменить:

Ответ. Из какого закона не получали бы мы сопротивление, всегда в системе СИ единицами его измерения должен быть Ом.

Источник

Какая единица является основной единицей измерения электрического сопротивления

Ом – единица измерения электрического сопротивления в Международной системе единиц (СИ). Имеет русское обозначение – Ом и международное обозначение – Ω.

Другие единицы измерения

Ом, как единица измерения:

Ом – единица измерения электрического сопротивления в Международной системе единиц (СИ), названная в честь немецкого учёного Георга Симона Ома.

Ом как единица измерения имеет русское обозначение – Ом и международное обозначение – Ω.

Ом равен электрическому сопротивлению проводника , между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

1 ом представляет собой электрическое сопротивление между двумя точками проводника , когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.

Ом = (кг · м 2 ) / (А 2 · с 3 ) = В / А.

1 Ом = (1 кг · 1 м 2 ) / (1 А 2 · 1 с 3 ) = 1 В / 1 А.

В Международную систему единиц ом введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «ом» пишется со строчной буквы, а её обозначение — с заглавной (Ом). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием ома.

Единицей, обратной ому, является сименс — единица измерения электрической проводимости в СИ.

Применение ома:

В омах измеряют электрическое сопротивление в проводниках.

Представление ома в других единицах измерения – формулы:

Через основные и производные единицы системы СИ ом выражается следующим образом:

Ом = (кг · м 2 ) / (А 2 · с 3 )

где А – ампер, В – вольт , м – метр, с – секунда, Вт – ватт , кг – килограмм , См – сименс.

Кратные и дольные единицы ома:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
10 1 Ом декаом даОм daΩ 10 −1 Ом дециом дОм
10 2 Ом гектоом гОм 10 −2 Ом сантиом сОм
10 3 Ом килоом кОм 10 −3 Ом миллиом мОм
10 6 Ом мегаом МОм 10 −6 Ом микроом мкОм µΩ
10 9 Ом гигаом ГОм 10 −9 Ом наноом нОм
10 12 Ом тераом ТОм 10 −12 Ом пикоом пОм
10 15 Ом петаом ПОм 10 −15 Ом фемтоом фОм
10 18 Ом эксаом ЭОм 10 −18 Ом аттоом аОм
10 21 Ом зеттаом ЗОм 10 −21 Ом зептоом зОм
10 24 Ом иоттаом ИОм 10 −24 Ом иоктоом иОм

Примечание: © Фото https://www.pexels.com, https://pixabay.com

схема полный эдс сопротивление ом ток резистор купить рисунок класс
закон ома для участка полной цепи цены
сила тока напряжение сопротивление мощность формула 0 2 3 4 ома в цепи каталог
какие электрическое сопротивление источника тока r 0 1 3 4 5 6 8 10 100 50 ом

Источник

Электрическое сопротивление — что это такое, простыми словами

В сегодняшней статье речь пойдет о еще одной важной величине, которая встречается в каждой задаче теории цепей – это электрическое сопротивление . Простыми словами, на простых примерах разберемся, что же это такое.

Ток, протекающий по проводу или через какой-либо элемент электрической цепи , зависит не только от приложенного напряжения, но и от электрического сопротивления проводов, элементов.

Для начала, чтобы легче было понять, рассмотрим это на примере трубы с водой. Если кран закрыт, то вода с него не вытекает.

Действие водопроводного крана очень схоже с действием электрического включателя . Если водопроводная труба тонкая, то вода будет вытекать из этой трубы узкой струей. Тонкая труба затрудняет течение воды (оказывает сопротивление), чем труба большего сечения. Поэтому за одно и то же время по трубе большего диаметра пройдет больше воды.

Провод оказывает сопротивление протекающему по нему току аналогично тому, как труба оказывает сопротивление течению воды . Т. е. чем больше сечение трубы, тем меньше сопротивление. Сопротивление трубы напрямую зависит от ее сечения.

Воду можно передать по шлангам, трубам и т. д. Но чем более широкой будет эта труба или шланг, т. е. чем больше ее диаметр, тем больше и быстрее можно передать воду из одного места в другое.

А для того, чтобы передать электричество – нужны провода, кабели и т. д. Диаметр этого провода выбирают в зависимости от того, какой величины будет ток. У тонкого провода сопротивление больше. Поэтому по тонкому проводу протекает небольшой ток .

А если, например, нужно запитать большое количество потребителей, скажем, от электростанции, то, как правило, берут провода большего сечения. Провода и кабели большего диаметра имеют небольшое сопротивление. Электрическое сопротивление зависит и от длины провода . Чем больше длина провода, тем больше его сопротивление.

Если подключить лампочку в сеть, то она будет светить ярко. Но если эту же лампу подключить в сеть на расстоянии 1 км, т. е лампа от розетки находится на расстоянии 1 км и соединяется проводами, то в этом случае лампа будет светить гораздо хуже, чем если бы эта лампа была рядом с розеткой и длина проводов была бы, например, 10 см.

Объясняется это очень просто. Чем длиннее провод, тем больше его сопротивление электрическому току и потерь энергии будет больше, так как происходит значительное падение напряжения на самих проводах. Поэтому напряжение в конце провода будет меньше, чем в начале и оно окажется недостаточным для нормального свечения лампы.

Помимо длины провода электрическое сопротивление зависит и от материала , из которого изготовлен провод. Алюминиевый провод проводит электрический ток хуже, чем, например, медный провод.

Также электрическое сопротивление будет больше, если уменьшить сечение провода и изготовить материал, который хуже проводит ток. Единицей измерения сопротивления является Ом . Электрическое сопротивление обозначается буквой R.

Подробнее о резисторах и все что с ними связано, мы поговорим уже в следующих статьях.

Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.

Источник

что такое сопротивление? в каких единицах измеряется

Электри́ческое сопротивле́ние — мера способности тел препятствовать прохождению через них электрического тока. Сопротивлением (резистором) также называют радиодеталь, оказывающую электрическое сопротивление току.

В системе СИ единицей сопротивления является ом (Ω). В системе СГС единица сопротивления не имеет специального названия. Сопротивление (часто обозначается буквой R) считается, в определённых пределах, постоянной величиной для данного проводника; её можно определить как

где
R — сопротивление;
U — разность электрических потенциалов на концах проводника, измеряется в вольтах;
I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

сопротивление-то, с какой силой метал (или не металл) препятствует проводке тока. Измеряется в оммах

вольты, делённые на оммы-амперы_)

Электри́ческое сопротивле́ние — мера способности тел препятствовать прохождению через них электрического тока. Сопротивлением (резистором) также называют радиодеталь, оказывающую электрическое сопротивление току.

В системе СИ единицей сопротивления является ом (Ω). В системе СГС единица сопротивления не имеет специального названия. Сопротивление (часто обозначается буквой R) считается, в определённых пределах, постоянной величиной для данного проводника; её можно определить как

R=U\I измеряется в омах
где

R — сопротивление;
U — разность электрических потенциалов на концах проводника, измеряется в вольтах;
I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.

Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов) . При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, изоляторах, электролитах, неполярных жидкостях, газах и т. д. ) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление материалов — введение в науку о прочности, жёсткости и надёжности элементов, конструкций, приборов и машин. Сопротивление материалов относится к фундаментальным дисциплинам общеинженерной подготовки специалистов с высшим техническим образованием.

Это первая дисциплина, устанавливающая связь между фундаментальными научными дисциплинами (физикой, высшей математикой и теоретической механикой) и прикладными задачами и методами их решения, возникающими при проектировании машин, приборов и конструкций. Практически все специальные дисциплины подготовки инженеров по разным специальностям содержат разделы курса сопротивления материалов, так как создание работоспособной новой техники невозможно без анализа и оценки ее прочности, жёсткости и надежности.

Задачей сопротивления материалов, как одного из разделов механики сплошной среды, является определение деформаций и напряжений в твёрдом упругом теле, которое подвергается силовому или тепловому воздействию.

Эта же задача среди других рассматривается в курсе теории упругости. Однако методы решения этой общей задачи в том и другом курсах существенно отличаются друг от друга. Сопротивление материалов решает её главным образом для бруса, базируясь на ряде гипотез геометрического или физического характера. Такой метод позволяет получить, хотя и не во всех случаях вполне точные, но достаточно простые формулы для вычисления напряжений.

Источник

Электрическое сопротивление

L 2 MT −3 I −2 (СИ);
TL −1 (СГСЭ, гауссова система);
LT −1 (СГСМ)

Электрическое сопротивление
Размерность
Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток
Известные учёные
Генри Кавендиш
Майкл Фарадей
Никола Тесла
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен
См. также: Портал:Физика

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему [1] . Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R — сопротивление; U — разность электрических потенциалов на концах проводника; I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Содержание

Единицы и размерности

Размерность электрического сопротивления в СИ: dim R = L 2 MT −3 I −2 . В международной системе единиц (СИ) единицей сопротивления является Ом (Ω, Ohm). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются [2] :

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (10 9 c −2 ) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·10 11 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер );
  • абом (в СГСМ, 1 abΩ = 1·10 −9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL −1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT −1 (то есть совпадает с размерностью скорости, см/с) [3] .

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом −1 ), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс [4] .

Физика явления

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, l — длина проводника, а S — площадь сечения.
Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector