Каким методом является измерение

Метрология

Методы и средства измерений физических величин

Как и чем производят измерения?

В результате измерения определяют числовое значение измеряемой величины, равное отношению измеряемой величины к единице измерения или эталону.
В зависимости от конкретных условий, применяемых измерительных средств и приемов их использования измерения могут производиться различными способами или методами. С точки зрения общих приемов получения результатов измерения различают измерения непосредственные , т. е. прямые и косвенные .

Прямые измерения

При прямых измерениях искомая величина определяется непосредственно показаниями прибора или измерительной шкалы инструмента.
К прямым измерениям относятся измерения длин линейками, штангенинструментом, микрометрами, широкодиапазонными инкрементными измерительными головками с цифровым отсчетом, высотомерами, измерения углов — угломерами и др.

Косвенные измерения

При косвенных измерениях искомая величина (размер или отклонение) определяется по результатам прямых измерений одной или нескольких величин, связанных с искомой величиной определенной функциональной зависимостью, т. е. после определения косвенных величин, влияющих на искомую, определяют искомую величину, используя математические методы вычислений или преобразований.
Примером косвенных измерений могут служить измерения диаметра вала по длине его окружности с помощью рулетки или обкатного ролика, измерения на координатно-измерительных машинах (КИМ) , и др.
На рисунке представлен пример косвенного измерения диаметра вала с помощью рулетки, при этом измеряется длина окружности и с помощью известной зависимости D = L/π определяется ее диаметр.

Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.

Каждое измерение может производиться абсолютным или относительным методом .

Абсолютный метод измерения

При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.

Относительный метод измерения

Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.

Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.

Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.

Кроме того, методы измерения делятся на комплексные и дифференцированные .

Комплексный метод измерения

Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Комплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.

Дифференцированный метод измерения

Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.

Комплексный метод измерения применяется преимущественно при проверке изделий, а дифференцированный метод — при проверке инструментов, настройке станков и при выявлении причин размерного брака изделий.

При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.

Контактный метод измерения

Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.

Бесконтактный метод измерения

Бесконтактный метод измерения характеризуется отсутствием измерительного контакта прибора с проверяемым объектом (например, при пневматическом методе измерения, при измерении на проекторах, микроскопах, лазерных приборах, лазерных итерферометрах и т.п.) .
В последнее время получил большое распространение бесконтактный метод измерения с помощью лазерного сканирования, в том числе 3D сканирования и лазерных триангуляционных измерениях.

Измерительные средства

Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:

  • меры и калибры;
  • универсальные инструменты и приборы, специальные средства измерений — контрольные приспособления, контрольные автоматы, приборы активного контроля;
  • координатно-измерительные машины.

Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.

Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.

Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.

Классификация средств измерения

Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:

  • механические инструменты, снабженные штриховой шкалой и нониусом — штангенинструменты и (штангенциркули, штангенглубиномеры, штангенрейсмасы и др.) и универсальные угломеры;
  • электронные штангенинструменты с цифровым отсчетом (штангенциркули, штангенглубиномеры, штангенрейсмасы) ;
  • микрометрические инструменты, основанные на применении микропар (микрометры, микрометрические нутромеры, глубиномеры и др.) ;
  • электронные микрометрические инструменты с цифровым отсчетом (микрометры, нутромеры, глубиномеры и др.) ;
  • механические индикаторы со шкалой и стрелкой;
  • электронные индикаторы с цифровым отсчетом;
  • оптические приборы (длиномеры, интерферометры, проекторы, микроскопы, лазерные приборы и др.) ;
  • индуктивные приборы;
  • широкодиапазонные приборы (емкостные, индуктивные и фотоэлектрические) ;
  • пневмоиндуктивные приборы;
  • высотомеры;
  • координатно-измерительные машины (КИМ) .

Кроме того, существуют специальные приборы — контрольные приспособления, контрольные автоматы и приборы активного контроля, предназначенные для контроля одной или нескольких однотипных деталей после их обработки на станке или в процессе обработки.

По числу одновременно проверяемых размеров приборы разделяются на одномерные и многомерные.
По установившейся на производстве терминологии простейшие измерительные средства — калибры, линейки, штангенинструмент, микрометры, уровни — именуются измерительным инструментом.

Источник

Понятие о методах измерений и их классификация.

Метод измеренийсовокупность ис­пользованных приемов (способов) сравнения измеряемой величины с ее еди­ницей (или шкалой) в соответствии с выбранным (реализованным) принци­пом измерений.

Принципы измерений —это физические эффекты (явления), положенные в основу измерений.

Рассмотрим лишь несколько широко распространенных эффектов.

а. Пьезоэлектрический эффектзаключается в возникновении ЭДС на поверхности (гранях) некоторых кристаллов (кварц, турмалин, искусственные пьезоэлектрические материалы — пьезокерамика и др.) под действием внешних сил (сжатие, растяжение).

б. Термоэлектрический эффект –используется свойство изменения электрического сопротивления металлов и полупроводников при изменении температуры.

с. Фотоэлектрический эффект.Для целей измерений используются внешний и внутренний фотоэффекты.

Методы измерений классифицируют по нескольким признакам.

1. По общим приемам получения результатов измерений различают:

прямой метод измерений;

косвенный метод измерений.

Первый реализуется при прямом измерении, второй — при косвенном измерении, которые описаны выше.

2. По условиям измерения различают контактный и бесконтактный методы измерений.

Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром). Бесконтактный метод измерения основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта локатором, измерение температуры в доменной печи пирометром).

3. Исходя из способа сравнения измеряемой величины с ее единицей различают методы непосредственной оценки и метод сравнения с мерой.

Использование метода непосредственной оценки позволяет определить всё значение величины непосредственно по отсчетному устройству показывающе­го средства измерений (амперметр, вольтметр, термометр и др.).

Мера, отража­ющая единицу измерения (дольные, кратные ее части), в измерении непос­редственно, как правило, не участвует. Ее роль в показывающем средстве изме­рений играет шкала, проградуированная при его производстве с помощью достаточно точных средств измерений.

Методы сравнения с меройпредусматривает сопоставление измеряемой ве­личины с величиной, воспроизводимой мерой.

Методы сравненияс мерой обычно реа­лизуются различными путями (рассматриваемыми ниже).

Дифференциальный метод измерений— метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей изве­стное значение, воспроизводимое мерой. Точность этого метода может быть высокой и определяется точностью величины, воспроизводимой мерой. Характерный пример дифференциального метода, иногда называемого методом неполного уравновешивания, приведен на рис. 5.1.

Рис. 5.1. Дифференциальный метод измерения

Вольтметр Vвключается с помощью переключателя Пв цепь с измеряемым сопротивлением rxили в цепь с регулируемым потенциометром (мерой) r0. При достижении одинаковых показаний вольтметра (rx= r0) регистрируется искомое значение rx.

Нулевой метод измерений,являясь частным случаем дифференциального, заключается в том, что результаты воздействия на средство измерений измеряемой величины (меры) взаимно уравновешиваются до нулевого показания. Характерным примером нулевого метода является измерение активного сопротивления мостом постоянного тока (рис. 5.2).

Рис. 5.2. Мостовая схема измерения сопротивления

Мостовая схема оказывается полностью уравновешенной (стрелка гальванометра Gпоказывает нуль), когда выполняется следующее условие: rxr2=r1r3.

Таким образом, при полном уравновешивании, искомая величина rx=r1r3/r2

Метод измерений замещениемзаключается в том, что измеряемая величи­на замещается мерой с известным значением величины. Примером использова­ния этого метода служит измерение емкости конденсатора, включенного в ко­лебательный контур. Путем изменения частоты напряжения, подаваемого на колебательный контур (от измерительного генератора), можно добиться резо­нанса. После этого вместо конденсатора с неизвестной емкостью в контур вклю­чается конденсатор с регулируемой известной емкостью (мера) и вновь прово­дится настройка контура в резонанс, при котором неизвестная емкость равна известной емкости меры.

Метод совпаденийзаключается в том, что разность между измеряемой ве­личиной и известной величиной (мерой) измеряют, используя совпадения от­меток шкал. Например, в методе измерения частоты переменного тока с помо­щью осциллографа сравнивают фигуры Лиссажу, соответствующие искомой частоте и частоте меры, и по их совпадению определяют искомую частоту. При измерении диаметра детали штангенциркулем, дольные (дробные) части величины получаем на шкале нониуса путем определения совпадения риски шкалы нониуса и основной шкалы.

Источник

Методы измерений

Под методом измерения понимают совокупность приемов использования принципов и средств измерений. Для прямых измерений можно выделить несколько основных методов: непосредственной оценки, сравнения с мерой, дифференциальный, нулевой, совпадений и замещения. При косвенных измерениях широко применяют преобразование измеряемой величины в процессе измерений.

Метод непосредственной оценки дает значение измеряемой величины непосредственно по отсчетному устройству измерительного прибора прямого действия. Например, измерение давления пружинным манометром, массы на циферблатных весах, силы электрического тока амперметром и т.д. Точность измерений с помощью этого метода бывает ограниченной, но быстрота процесса измерения делает его незаменимым для практического применения. Наиболее многочисленной группой средство измерений, применяемых для измерения этим методом, являются показывающие, в том числе и стрелочные, приборы (манометры, вольтметры, расходомеры и др.). Измерение с помощью интегрирующего измерительного прибора-счетчика также является методом непосредственной оценки. Этим же методом осуществляют измерения с помощью самопищущих приборов. Однако определение какой-либо величины путем планиметрирования площади, ограниченной записанной кривой, уже не является методом непосредственной оценки и относится к косвенным методам.

В случае выполнения особо точных измерений применяют метод сравнения с мерой, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, измерение массы на рычажных весах с уравновешиванием гирям или измерение напряжения постоянного тока на компенсаторе сравнения с ЭДС нормального элемента.

Метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействует на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами, называется методом противопоставления. Например, взвешивание груза на равноплечих весах, когда измеряемая масса определяется как сумма масс гирь, ее уравновешивающих, и показания по шкале весов. Этот метод позволяет уменьшить воздействие на результаты измерений влияющих величин, так как они более или менее равномерно искажают сигналы измерительной информации как в цепи преобразования измеряемой величины, так и в цепи преобразования величины, воспроизводимой мерой.

Дифференциальный (разностный) метод характеризуется измерением разности между значениями измеряемой и известной (воспроизводимой мерой) величин. Например, измерения путем сравнения с образцовой мерой на компараторе, выполняемые при поверке мер длины. Дифференциальный метод позволяет получать результаты с высокой точностью даже при применении относительно грубых средств для измерения разности. Но осуществлять этот метод возможно только при условии воспроизведения с большой точностью известной величины, значение которой близко к значению измеряемой. Это во многом случаях легче, чем изготовить средство измерений высокой точности.

Нулевой метод – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Например, измерения электрического сопротивления мостом с полным его уравновешиванием.

Дифференциальные и нулевые методы нашли очень широкое применение во всех видах измерений: от производственных (в цехах) до сличений эталонов, так как используемые меры (гири, нормальные элементы, катушки и магазины сопротивлений) точнее, чем соответствующие им по стоимости и степени распространения приборы.

Метод совпадений – этот метод сравнений с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении длины с помощью штангенциркуля с нониусом наблюдают совпадение отметок на шкалах штангенциркуля и нониуса. В производственной практике метод совпадений иногда называют нониусным. Этот метод позволяет существенно увеличить точность сравнения с мерой.

Метод замещения основан на сравнении с мерой, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой, сохраняя все условия неизменным. Например: взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов; измерение электрического сопротивления резистора путем замены его магазином сопротивлений и подбором значения его сопротивления до получения прежних показаний омметра, моста или другого прибора, обладающего достаточной чувствительностью при любой систематической погрешности, так как отчет берется по мере, а не по прибору. Погрешность измерения определяется в основном погрешностью меры и зоной нечувствительности прибора (ноль — индикатора), а потому весьма мала. Недостатком метода замещения является необходимость применения многозначных мер (магазина мер, батареи нормальных элементов, набора гирь и т.д.).

Комбинация методов замещения и дифференциального хотя несколько снижает точность, но позволяет использовать меньше наборы мер.

Источник

Измерения

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей или шкалой в соответствии с реализованным принципом измерений.

По общим приемам получения результатов измерений методы различают на:

  • прямой метод измерений – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Прямые измерения не требуют методики проведения измерений и проводятся по эксплуатационной документации на применяемое средство измерений;
  • косвенный метод измерений – измерение, результат которого определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Косвенные измерения применяются в случаях, когда невозможно выполнить прямые измерения, например при определении плотности твердого тела, вычисляемой по результатам измерений объема и массы.

По условиям измерения:

  • контактный метод измерений – основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром);
  • бесконтактный метод измерений – основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают:

  • метод непосредственной оценки – метод при котором значение величины определяют непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
  • метод сравнения с мерой – метод при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует три разновидности этого метода:
    • нулевой метод – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерения электрического сопротивления мостом с полным его уравновешиванием;
    • метод замещения – основан на сравнении с мерой, при котором измеряемую величину замещают измвестной величиной, воспроизводимой мерой, сохраняя все условия неизменными, например взвешивание c поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов;
    • метод совпадений – метод сравнения с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов, например при измерении с использованием штангенциркуляс нониусом наблюдают совпадение меток на шкалах штангенциркуля и нониуса;
  • дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.
  • метод совпадений – метод измерений, при котором определяют разность между измеряемой величиной и величиной воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение длины при помощи штангенциркуля с нониусом. Метод совпадений часто применяется при измерениях параметров периодических процессов.

Поскольку погрешность определяется не только метрологическими характеристиками средств измерений, но и погрешностью отбора и приготовления проб, условиями проведения измерений, ошибкой оператора и другими причинами, это определение означает, что методики выполнения измерений могут разрабатываться и быть аттестованными только применительно к конкретным условиям проведения измерения с использованием конкретных средств.

Данное утверждение не означает, что для каждой измерительной или испытательной лаборатории должны разрабатываться собственные методики. Но если лаборатория использует тип средства измерения, приведенный в аттестованной методике, влияющие факторы (температура и влажность окружающего воздуха и измеряемой среды, напряжение и частота электрической сети, вибрация, внешнее магнитное поле и др.) находятся в определенном данной методикой диапазоне, а оператор соответствует установленной в ней квалификации, то физические величины будут измеряться в этой лаборатории с известной погрешностью.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector