Меню

Какие бывают виды измерений по способу получения информации



Виды измерений. Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе из­мерений

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе из­мерений, по количеству измерительной информации, по отно­шению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения — это непосредственное сравнение физи­ческой величины с ее мерой. Например, при определении дли­ны предмета линейкой происходит сравнение искомой величи­ны (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых из­мерений таких величин, которые связаны с искомой опреде­ленной зависимостью. Так, если измерить силу тока ампермет­ром, а напряжение вольтметром, то по известной функцио­нальной взаимосвязи всех трех величин можно рассчитать мощ­ность электрической цепи.

Совокупные измерения сопряжены с решением системы урав­нений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения — это измерения двух или более не­однородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой вели­чины в процессе измерений бывают статистические, динамиче­ские и статические измерения.

Статистические измерения связаны с определением харак­теристик случайных процессов, звуковых сигналов, уровня шу­мов и т.д.

Статические измерения имеют место тогда, когда измеряе­мая величина практически постоянна.

Динамические измерения связаны с такими величинами, ко­торые в процессе измерений претерпевают те или иные изме­нения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения — это одно измерение одной вели­чины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда со­пряжено с большими погрешностями, поэтому следует прово­дить не менее трех однократных измерений и находить конеч­ный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность изме­рения.

По отношению к основным единицам измере­ния делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых ис­пользуются прямое измерение одной (иногда нескольких) ос­новной величины и физическая константа. Так, в известной формуле Эйнштейна Е=mс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (с) — физическая константа.

Относительные измерения базируются на установлении от­ношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как «шкала измере­ний», «принцип измерений», «метод измерений».

Шкала измерений — это упорядоченная совокупность значе­ний физической величины, которая служит основой для ее из­мерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температур­ной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной со­ли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фа­ренгейта) принята одна девяносто шестая часть основного ин­тервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в ас­пекте обеспечения единства измерений. В данном случае требу­ется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t°F/t°C.

В метрологической практике известны несколько разновидно­стей шкал: шкала наименований, шкала порядка, шкала интер­валов, шкала отношений и др.

Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц изме­рений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении ок­рашенного предмета с образцами цветов (эталонными образца­ми атласа цветов). Поскольку каждый цвет имеет немало вари­антов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствую­щими особыми характеристиками зрительных возможностей.

Шкала порядка характеризует значение измеряемой величи­ны в баллах (шкала землетрясений, силы ветра, твердости фи­зических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые зна­чения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Напри­мер, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания (сравните бытовые и анали­тические весы).

Источник

Классификация измерений. 1. По способу получения информации существует 4 вида — прямые, косвенные, совокупные и совместные измерения

1. По способу получения информации существует 4 вида — прямые, косвенные, совокупные и совместные измерения. Прямые — искомое значение определяется непосредственным сравнением с мерой (линейка, вольтметр). Косвенные — искомое значение определяется по результатам прямых измерений других величин, связанных с искомой известной зависимостью (мощность как результат измерения силы тока и напряжения). Совокупные — искомое значение определяется решением системы уравнений по результатам прямых (или косвенных) измерений нескольких однородных величин (взаимоиндуктивнoсть между двумя катушками со сложением и вычитанием магнитных полей). Совместные — нахождение зависимости между несколькими неоднородными физическими величинами (температурная зависимость сопротивления терморезистора с определением коэффициентов уравнения для различных температур).

2. По характеру изменения измеряемой величины в процессе измерений существует 3 вида — статические, динамические и статистические.

3. По количеству измерительной информации — однократные и многократные.

4. По отношению к основным единицам — абсолютные (как правило, прямые измерения основных физических величин), относительные (отношения однородных величин).

5. По точности определения результата измерения — эталонные, рабочие.

Классификация средств измерений, реализующих по совокупности виды измерений, описанные выше.

1. Основным видом средств измерений является мера, предназначенная для воспроизведения физической величины заданного размера (гиря, лампа, генератор). Меры бывают однозначные, многозначные (линейка) и в виде набора (плоскопараллельных концевых мер длины). Особый класс мер — стандартные образцы состава и свойств веществ и материалов, особенно величины для физико-химических измерений в металлургии, медицине, экологии, производстве продуктов и т. п.

2. Измерительные приборы, которые предназначены для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. По способу измерения информации приборы делятся на прямого действия (амперметр, термометр) и сравнения (весы, потенциометр), а по способу образования показаний — на показывающие и регистрирующие. Приборы существуют как в аналоговом, так и в цифровом исполнениях.

Читайте также:  Измерение сопротивления заземляющих устройств ктп

3. Измерительные преобразователи предназначены для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Как правило, эта информация не поддается непосредственному восприятию наблюдателем. преобразователь, стоящий первым в измерительной цепи, обычно называется первичным (термопара, сужающее устройство). Если первичный преобразователь имеет конструктивную самостоятельность и нормированную функцию преoбразования, то его называют датчиком. Как правило, датчики преобразуют неэлектрические величины в электрические. Существует огромный класс промежуточных (вторичных) преобразователей, которые, как правило, не меняют род физической величины. Широко известны аналоговые, аналого-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи.

4. измерительные установки и системы — большой постоянно расширяющийся вид, представляет собой совокупность функционально объединенных средств измерений и вспомогательных устройств (АИС — автоматизированная измерительная система, ИИС — информационно-измерительная система, ИВК — измерительно-вычислительный комплекс).

5. Вспомогательные устройства, служащие для обеспечения операций измерений, передачи и обработки информации и т. п. (источники питания, коммутаторы, усилители, термостаты и пр.), составляют вид измерительных принадлежностей.

В последнее время в законодательной метрологии под влиянием двух процессов — сертификации продукции, с одной стороны, и испытаний с целью утверждения типа, — с другой, возникают два новых наименования видов — «модуль» и «семейство». Считается, что «модуль» может быть прибором с самостоятельными характеристиками, и «семейство модулей» может составить новое средство измерений, структура которого легко модифицируется. Таким образом, несколько расширяется вид «установки и системы». Что касается «семейства», то этот вид имеет перспективу распространения на средства измерений одного типа, имеющие единую конструктивную основу, но различающуюся по диапазону измеряемой физической величины, и составляющие некоторую гамму средств измерений, перекрывающую какой-то диапазон значений.

3. Допуски, посадки, основные отклонения, квалитеты и их обозначения. Система вала и система отверстия.

4. Система единиц физических величин СИ.

Важное условие практического использования результата измерения, т. е. экспериментального определения какой-либо физической величины, — количественное представление этой физической величины в выбранной системе единиц. Долгое время в различных странах употреблялись различные системы единиц, спонтанно возникшие чаще всего из конкретных потребностей практики.

Особые единицы имели не только различные государства, часто и в пределах одной страны использовались разные единицы; так, например, во Франции каждый феодал имел право устанавливать свои меры. В справочнике инженера Н. И. Лепина, изданном для строителей и широко распространенном в дореволюционной России, можно обнаружить определения 100 различных футов, 46 различных миль, 120 различных фунтов и т.п.

Идею построения единой системы единиц на десятичной основе впервые высказал французский астроном Мутон, живший в XVII в. Немецкий математик Гаусс предложил систему единиц: миллиметр—миллиграмм—секунда. Система эта в свое время получила достаточно большое распространение и известна ныне как «абсолютная система единиц».

Потребности в унификации систем единиц привели к тому, что в 1954 г. Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина и свеча) практической системы единиц для международного обращения. В то же время на конференции была сформирована комиссия по разработке Международной системы единиц. Соответствующий проект был принят Международным комитетом по мерам и весам в том же году и в I960 г. утвержден XI Генеральной конференцией по мерам и весам. Принятие Международной системы единиц, (СИ) явилось важным этапом развития мировой метрологической науки. В 1961 г. Государственный комитет стандартов, мер и измерительных приборов Совета Министров СССР утвердил ГОСТ 9867—01, названный «Международная система единиц».

Международная система единиц позволила согласовать коэффициенты пропорциональности в уравнениях, выражающих основные законы физики. Были унифицированы основные и производные единицы для всех областей пауки и техники, к которым данное конкретное исследование (теоретическое или экспериментальное) относится. Вообще она очень удобна для всех видов человеческой деятельности.

Международная система единиц (СИ) построена на шести основных единицах и двух дополнительных. Три первые основные единицы (метр, килограмм, секунда) позволяют образовать производные единицы для всех величин, имеющих чисто механическую природу, а три остальные основные единицы (ампер, градус Кельвина, свеча) дают возможность образовать производные единицы для величин, не сводимых к механическим явлениям: ампер — для электрических и магнитных величин, градус Кельвина — для тепловых величин, свеча — для величин в области фотометрии.

Угловые единицы (радиан и стерадиан) не могут быть введены в число основные, так как это вызвало бы затруднения в трактовке размерностей величин, связанных с вращением (дуги окружности, площади круга, работы пары сил и т.д.). По существу эти единицы являются производными, хотя и с той особенностью, что имеют одинаковый размер в различных системах единиц.

В табл. 2 и 3 даны перечни основных, дополнительных и производных единиц.

Определения основных и дополнительных единиц.

Метр—длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона 86.

В 1791 г., при установлении метрической системы мер, метр был определен как одна десятимиллионная часть четверти парижского меридиана. Такое определение метра было продиктовано стремлением обеспечить неизменность и воспроизводимость единицы длины. По данным измерений части меридиана был изготовлен эталон метра в виде платиновой концевой меры, получившей в дальнейшем название «метр Архива». Однако в 1872 г. комиссия по прототипам метрической системы приняла рекомендацию определить метр длиной этого эталона, т. е. заменить «естественный» эталон метра искусственным, условным, из-за возможных расхождений при повторных измерениях части меридиана вследствие неизбежных погрешностей и отсутствия точных данных о фигуре Земли. Позднее были изготовлены платино-иридисвые штриховые эталоны метра для раздачи странам, подписавшим метрическую конвенцию, и один из них, а именно метр № 6, длина которого оказалась равной длине метра Архива, был утвержден в качестве международного прототипа метра.

Однако ширина штрихов, устанавливающих длину метра, составляла около 10 мкм, поэтому с помощью прототипа нельзя было определить метр с погрешностью, меньшей 0,1 мкм.

5. Классификация измерений. Понятие о точности измерений.

Источник

Виды измерений

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

1) По характеру зависимости измеряемой величины от времени:

а) статические — имеют место, когда измеряемая величина практически постоянна (измерения размеров тела, постоянного давления);

б) динамические, связанные с величинами, которые в процессе измерений претерпевают те или иные изменения (измерения пульсирующих давлений, вибраций).

2) По способу получения результатов:

а) Прямые измерения — измерения, при которых искомое значение физической величины находят непосредственно из опытных данных путем ее непосредственного сравнения с мерой. (измерение давления, температуры и др.).

б) Косвенные измерения — измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят через преобразование или через установленную формулу ( определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения).

Читайте также:  Ми бэнд измерение давления

в) Совокупные измерения — это производимые одновременно измерения нескольких одноименных величин, характеризующих Данный предмет или изделие, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин ( определение массы отдельных гирь набора (или прогнозирование погоды на основе замеров силы ветра, влажности воздуха, фронтов и т.п).

г) Совместные измерения — это производимые одновременно измерения двух или нескольких неоднородных физических величин для нахождения зависимостей между ними (измерение электрического сопротивления при определенных температурных параметрах и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах).

3) По условиям, определяющим точность результата:

а) Измерения максимально возможнойточности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения и др.). К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

б) Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого заранее заданного значения.

в) Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

4) По способу выражения результатов измерений:

а) Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант (определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате).

б) Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную (измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 м» 3 воздуха к количеству водяных паров, которое насыщает 1 m j воздуха при данной температуре).

5) По характеру изменения измеряемой величины измерения:

а) Статические — применяют для измерения случайных процессов, а затем для определения среднестатистической величины;

б) Постоянные — используют для контроля непрерывных процессов.

6) По количеству измерительной информации измерения:

а) Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями.

б) Многократные измерения — характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений — значительное снижение влияний случайных факторов на погрешность измерения.

Основными характеристиками измерений являются:

Принцип измерении — физическое явление или совокупность физических явлений, положенных в основу измерений (измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта).

Метод измерений — совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Различают методы непосредственной оценки и методы сравнения .

При измерении методом непосредственной оценки искомое значение величины определяют непосредственно по отсчетному устройству средства измерения, которое проградуировано в соответствующих единицах.

Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (например, сравнение массы на рычажных весах). Отличительной чертой методов сравнения является непо­средственное участие меры в процедуре измерения, в то время как в методе непосредственной оценки мера в явном виде при измерении не присутствует, а ее размеры перенесены на отсчетное устройство (шкалу) средства измерения заранее, при его градуировке. Обязательным в методе сравнения является наличие сравнивающего устройства.

Метод сравнения с мерой имеет несколько разновидностей: нулевой метод, дифференциальный метод, метод замещения и метод совпадений.

Нулевой метод (или метод полного уравновешивания) — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и встречного воздействия меры на сравнивающее устройство сводят к нулю.

Например. Измерение массы на равноплечих весах, когда воздействие на весы массы mх полностью уравновешивается массой гирь m (рисунок 2).

Рисунок 2 – Метод полного уравновешивания

При дифференциальном методе полное уравновешивание не производят, а разность между измеряемой величиной и величиной, воспроизводимой мерой, отсчитывается по шкале прибора.

Например. Измерение массы на равноплечих весах, когда воздействие массы mх на весы частично уравновешивается массой гирь m, а разность масс отсчитывается по шкале весов, градуированной в единицах массы (рисунок 3).

Рисунок 3 – Дифференциальный метод

В этом случае значение измеряемой величины mх = m + m, где m показания весов

Метод замещения — метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.

Например.Взвешивание на пружинных весах. Измерение производят в два приема. Вначале на чашу весов помещают взвешиваемую массу и отмечают положение указателя весов; затем массу mх замещают массой гирь m, подбирая ее так, чтобы указатель весов установился точно в том же положении, что и в первом случае. При этом ясно, что mх = m, (рисунок 4).

Рисунок 4 – Метод замещения

В методе совпадений разность между измеряемой величиной и величиной воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов.

Например. Измерение числа оборотов вала с помощью стробоскопа вал периодически освещается вспышками света, и частоту вспышек подбирают так, чтобы метка, нанесенная на вал, казалась наблюдателю неподвижной. Метод совпадений, использующий совпадения основной и нониусной отметок шкал, реализуется в штангенприборах, применяемых для измерения линейных размеров.

Погрешность измерений — отклонение результата измерений от истинного значения измеряемой величины. Погрешность вызывается воздействием множества факторов, таких как: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия измерения (температура, влажность, давление и т.п.), индивидуальные особенности лица, выполняющего измерения, и др. Под влиянием этих факторов результат измерений будет отличаться от истинного значения измеряемой величины.

Точность измерений — качественная характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.

Количественно точность можно выразить величиной «класс точности». Это характеристика, зависящая от способа выражения пределов допускаемых погрешностей средств измерений. Введение класса точности преследовало цель классификации средств измерений по точности. В настоящее время, когда схемы и конструкции средств измерений усложнились, а области применения средств измерений весьма расширились, на погрешность измерений стали существенно влиять и другие факторы: изменения внешних условий и характер изменения измеряемых величин во времени.

Погрешность измерительных приборов перестала быть основной составляющей погрешности измерений, и класс точности не позволяет в полной мере решать практические задачи, перечисленные выше. Область практического применения характеристики «класс точности» ограничена только такими средствами измерений, которые предназначены для измерения статических величин. В международной практике «класс точности» устанавливается только для небольшой части приборов.

Читайте также:  Оборудование для измерения вязкости

Правильность измерений — качество измерений, отражающее близость к нулю систематических погрешностей в их результатах (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Достоверность характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Поэтому такие вероятности следует рассматривать в качестве критериев достоверности контроля, чтобы в границах допуска правильно охарактеризовать параметры качества и безопасности.

Наличие погрешности ограничивает достоверность измерений, т.е. вносит ограничение в число достоверных значащих цифр числового значения измеряемой величины и определяет точность измерений. Характеристики погрешности измерений должны выбираться при контроле образцов продукции в соответствии с требованиями достоверности контроля.

Измерения как основной объект метрологии связаны в основном с физическими величинами:

Физическая величина — одно из свойств физического объекта, явления, процесса, который является общим в качественном отношении для многих физических объектов, отличаясь при этом количественным значением.

Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины.

Различают основные и производные единицы.

Основные единицы физической величины выбираются произвольно, независимо от других единиц ( единица длины — метр, единица массы — килограмм, единица температуры — градус и т.д.)

Единицы, образованные с помощью формул, выражающих зависимость между физическими величинами, называют производными единицами. В этом случае единицы величин будут выражаться через единицы других величин. Например, единица скорости — метр в секунду (м/с), единица плотности — килограмм на метр в квадрате (кг/м 2 ).

Разные единицы одной и той же величины отличаются друг от друга своим размером. Такие единицы называют кратными (например, километр — 10 3 м, киловатт — 10 3 Вт) или дельными (например, миллиметр — 10 -3 м, миллисекунда — 10-3 с). Такие единицы получают умножением или делением независимой или производной единицы на целое число, обычно на 10.

Единицы физических величин объединяются по определенному принципу в системы единиц. Эти принципы заключаются в следующем: произвольно устанавливают единицы для некоторых величин, называемых основными единицами, и по формулам через основные получают все производные единицы для данной области измерений. Совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами, составляет систему единиц физических величии.

Многообразие систем единиц для различных областей измерений создавало трудности в научной и экономической деятельности как в отдельных странах, так и в международном масштабе. Поэтому возникла необходимость в создании единой системы единиц, которая включала бы в себя единицы величин для всех разделов физики.

Международная система единиц состоит из семи основных единиц, двух дополнительных единиц и необходимого числа производных единиц.

К основным относятся:

— единица длины — метр — длина пути, которую проходитсвет в вакууме за 1/299792458 долю секунды;

— единица массы — килограмм — масса, равная массе международного прототипа килограмма;

— единица времени — секунда — продолжительность9192631770 периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;

— единица силы электрического тока — ампер — сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого ввакууме, создал бы между этими проводниками силу, равную 2 • 10

7 Н на каждый метр длины;

— единица термодинамической температуры — кельвин — часть термодинамической температуры тройной точки воды. Допускается также применение шкалы Цельсия;

— единица количества вещества — моль — количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;

— единица силы света — кандела — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540- 10 12 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср».

Три первые единицы (метр, килограмм, секунда) позволяют образовать производные единицы для измерения механических и акустических величин. При добавлении к указанным четвертой единицы — кельвина можно образовать производные единицы для измерений тепловых величин.

Единицы (метр, килограмм, секунда, ампер) служат основой для образования производных единиц в области электрических, магнитных измерений и измерений ионизирующих излучений. Единица моль используется для образования единиц в области физико-химических измерений.

Дополнительными единицами являются:

Единица плоского угла — радиан и единица телесного угла — стерадиан используются для образования производных единиц, связанных с угловыми величинами (например, угловая скорость, световой поток и др.).

ШКАЛЫ ИЗМЕРЕНИЙ

Шкала наименований – это качественная, а не количественная шкала, она не содержит нуля и единиц измерений (напр., шкала цветов).

Такие шкалы используется для классификации объектов, свойства которых проявляются только в отношении эквивалентности (совпадения или несовпадения). Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. В шкалах наименований оценивание осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствуют понятия нуля, «больше или меньше» и единицы измерения.

Шкала порядка – характеризует значение измеряемой величины в баллах (напр., шкала землетрясений; силы ветра и др.).

Она является монотонно изменяющейся и позволяет установить отношения «больше — меньше» между величинами, характеризующими это свойство. Нуль существует или не существует, но принципиально невозможно ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нельзя судить, во сколько раз больше или меньше конкретные проявления свойства.

Шкала интервалов – имеет условное нулевое значение, а интервалы устанавливают по согласованию (напр., шкала времени, шкала длины).

Данные шкалы являются дальнейшим развитием шкал порядка. Шкала состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало – нулевую точку. К таким шкалам относится летоисчисление, температурные шкалы.

Шкала отношений – имеет естественное нулевое значение, а единица измерений устанавливается по согласованию, в зависимости от требования точности измерения (напр., шкала веса).

С формальной точки зрения эта шкала является шкалой интервалов с естественным началом отсчета. К значениям, полученным по шкале отношений, применимы все арифметические действия, что имеет большое значение при измерении ФВ.

Источник