Меню

Какие методы электротехнических измерений оценивают как точные



Виды и методы электрических измерений

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину — это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для теории и практики электрических измерений. К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y — искомое значение измеряемой величины; X — значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры — термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F (Xl, Х2 . Х n ), где Y — искомое значение измеряемой величины; Х 1 , Х2, Х n — значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами . В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20 [1+α (T1-20)+β(T1-20)]

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод — это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов — нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Читайте также:  Принцип измерения силы тока

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений — это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины штангенциркулем с нониусом. В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t 1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

Источник

Виды и методы электрических измерений

Энергосбережение и энергоэффективность промышленности невозможно представить без электрических измерений, так как невозможно экономить то, чему не знаешь счета.

Электрические измерения выполняются по одному из следующих видов: прямой, косвенный, совокупный и совместный. Название прямого вида говорит само за себя, значение нужной величины определяется непосредственно прибором. Примером таких измерений может служить определение мощности ваттметром, силы тока амперметром и т. д.

Косвенный вид заключается в нахождении величины на основании известной зависимости этой величины и величины, найденной прямым методом. Примером может служить определение мощности без ваттметра. Прямым методом находят I, U, фазу и по формуле вычисляют мощность.

Совокупный и совместный виды измерений заключаются в одновременном измерении нескольких одноименных (совокупный) или не одноимённых (совместный) величин. Нахождение искомых величин осуществляется решением систем уравнений с коэффициентами, полученными в результате прямых измерений. Число уравнений в такой системе должно равняться числу искомых величин.

Прямые измерения как самый распространенный вид измерений могут производиться двумя основными методами: метод непосредственной оценки и метод сравнения с мерой. Первый метод является самым простым, так как значение нужной величины определяют по шкале прибора.

Таким методом определяется сила тока амперметром, напряжение вольтметров и т. д. Достоинством данного способа можно назвать простоту, а недостатком невысокую точность.

Читайте также:  Методические указания при измерении освещенности

Измерения сравнением с мерой выполняется по одной из следующих методик: замещения, противопоставления, совпадения, дифференциальной и нулевой. Мера является своего рода эталонным значением некоторой величины.

Дифференциальный и нулевой методы – заложены в основе работы измерительных мостов. При дифференциальном методе делают неуравновешенно-показывающие мосты, а при нулевом – уравновешенные или нулевые.

В уравновешенных мостах сравнение происходит при помощи двух или более вспомогательных сопротивлений, подбираемых таким образом, чтобы со сравниваемыми сопротивлениями они составляли замкнутый контур (четырехполюсник), питаемый от одного источника и имеющий равнопотенциальные точки, обнаруживаемые индикатором равновесия.

Отношение между вспомогательными сопротивлениями является мерой отношения между сравниваемыми величинами. Индикатором равновесия в цепях постоянного тока выступает гальванометр, а в цепях переменного тока милливольтметр.

Дифференциальный метод иначе называют разностным, так как на средство измерения воздействует именно разность известной и искомой величины тока. Нулевой метод является предельным случаем дифференциального метода. Так например, в указанной мостовой схеме гальванометр показывает ноль, если соблюдается равенство:

Из этого выражения следует:

Таким образом, можно вычислить сопротивление любого неизвестного элемента, при условии, что остальные 3 являются образцовыми. Образцовым также должен быть и источник постоянного тока.

Метод противопоставления – иначе этот метод называют компенсационным и используют для непосредственного сравнения напряжения или ЭДС, тока и косвенно для измерений других величин, преобразуемых в электрические.

Две встречно направленные ЭДС, не связанные между собой включаются на прибор, по которому уравновешивают ветви схемы. На рисунке: требуется найти Ux. С помощью образцового регулируемого сопротивления Rk добиваются такого падения напряжения Uk, чтобы численно оно было равно Ux.

Судить об их равенстве можно по показаниям гальванометра. При равенстве и ток в цепи гальванометра протекать не будет, так как они противоположно направлены. Зная сопротивление и величину тока по формуле определяем .

Метод замещения – метод, при котором искомую величину замещают или совмещают с известной образцовой величиной, по значению равной замещенной. Такой способ применяется для определения индуктивности или емкости неизвестной величины. Выражение, определяющее зависимость частоты от параметров цепи:

Слева, частота f0 задаваемая генератором ВЧ, в правой части значения индуктивности и емкости измеряемой цепи. Подбирая резонанс частоты можно определить неизвестные значения в правой части выражения.

Индикатором резонанса является электронный вольтметр с большим входным сопротивлением, показания которого в момент резонанса будут наибольшими. Если измеряемую катушку индуктивности включить параллельно образцовому конденсатору и измерять резонансную частоту, то значение Lx можно найти по вышеуказанному выражению. Аналогично находится неизвестная емкость.

Вначале резонансный контур, состоящий из индуктивности Lи образцового конденсатора емкости Co, настраивают в резонанс на частоту fo; при этом фиксируют значения fo и емкости конденсатора Co1.

Затем, параллельно образцовому конденсатору Co подключают конденсатор и изменением емкости образцового конденсатора добиваются резонанса при той же частоте fo; соответственно искомая величина равна Co2.

Метод совпадений – метод, при котором разность между искомой и известной величиной определяется по совпадению отметок шкал или периодических сигналов. Ярким примером применения этого способа в жизни является измерение угловой скорости вращения различных деталей.

Для этого на измеряемом объекте наносят метку, например мелком. При вращении детали с меткой, на нее направляют стробоскоп, частота мигания которого известна изначально. Регулированием частоты стробоскопа добиваются, чтобы метка стояла на месте. При этом частоту вращения детали принимают равной частоте мигания стробоскопа.

Источник

Методы электрических измерений

Вопрос

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом.

Электрические заряды взаимодействуют между собой, т. е. одноименные заряды взаимно отталкиваются, а разноименные притягиваются. Силы взаимодействия электрических зарядов определяются законом Кулона и направлены по прямой линии, соединяющей точки, в которых сосредоточены заряды.

Согласно закону Кулона, сила взаимодействия двух точечных электрических зарядов прямо пропорциональна произведению количеств электричества в этих зарядах, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся заряды:

Читайте также:  Прибор для измерения внутриглазного давления игд 02 пра

Вопрос

Потенциал — Величина, характеризующая запас энергии тела, находящегося в данной точке поля (электрического, магнитного).

Напряжённость электри́ческого по́ля— векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда

Вопрос

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом.

Проводники

К проводникам относятся все металлы и их сплавы, а также электротехнический уголь
К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.
К газообразным относятся ионизированные газы.
Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.
Свойства проводников:Электрические, Физические, Механические, Химические.

Диэлектрики

Не пропускают электрический ток .Диэлектрики обладают высоким удельным сопротивлением. Используются для защиты проводника от влаги, механических повреждений, пыли.

Диэлектрики бывают:твердые- все неметаллы;жидкие- масла, синтетические жидкости СОВОЛ, СОВТОЛ; газообразные- все газы: воздух, кислород, азот и т.д.

Свойства диэлектриков:Электрические свойства, Физико-химические свойства, Химические, Механические.

Вопрос

Виды электрических измерений.Прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F (Xl, Х2 . Хn), В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20 [1+α (T1-20)+β(T1-20)]

Методы электрических измерений

Нулевой метод — это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов — нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений. Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе, так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Метод совпадений — это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений. Примером может служить измерение длиныштангенциркулем с нониусом. В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Источник