Какие методы измерения кпд трансформатора вы знаете

Какие методы измерения кпд трансформатора вы знаете

«Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Всё вокруг вращается, движется — всё энергия. Перед нами грандиозная задача — найти способы добычи этой энергии. Тогда, извлекая её из этого неисчерпаемого источника, человечество будет продвигаться вперёд гигантскими шагами» Никола Тесла (1891)

суббота, 4 августа 2018 г.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРА

§ 3.5. КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРА
В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.

Коэффициент полезного действия трансформатора — это отношение отдаваемой активной мощности к потребляемой

где P1 — мощность, потребляемая из сети, P2 мощность, отдаваемая нагрузке. Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод

определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности P2 и P1 мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.

Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).

На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:

где Рст потери в стали (в сердечнике) и Рм потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.

Для определения потерь обычно пользуются двумя опытами — опытом холостого хода и опытом короткого замыкания.

В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.

Если вторичную обмотку трансформатора замкнуть накоротко,

а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.

Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди Рм

Источник

КПД Трансформатора

Отношение отдаваемой мощности Р2 к получаемой Р1 , выраженное в единицах активной мощности, т. е. в ваттах или киловаттах, называют коэффициентом полезною действия η. Для трансформатора

Потери в стали постоянны, а потери в обмотках пропорциональны квадрату тока или квадрату вторичной мощности S2. Пусть S2 : S2H = Ʀ нг , коэффициенту нагрузки трансформатора. Тогда, зная Рст и Ро. н, можно для любой нагрузки трансформатора подсчитать к.п.д.:

Зависимость к. п. д. от вторичной мощности, подсчитанная по этой формуле, показана на рис. 9-26.

Как указывалось ранее, к. п. д. трансформатора очень высок. Максимальное значение к. п. д. наступает при такой нагрузке, при которой потери в обмотках становятся равными потерям

в стали. Эта нагрузка устанавливается расчетом меньшей номинальной по экономическим соображениям. Она легко определяется, если взять приведенные в каталогах для трансформатора данные Рх = Рст и Ро.н = Рк.н

Рис. 9-26. Кривая зависимости к. п. д. трансформатора от вторичной мощности.

Пример. Трансформатор мощностью Рн = 560 ква, напряжением 35 и 10,5 кв имеет потери холостого хода при номинальном напряжении 3 350 вт и потери короткого замыкания при номинальных токах 9 400 вт. Найти ту нагрузку, при которой будет наибольший к. п. д.

НАГРЕВ И ОХЛАЖДЕНИЕ ТРАНСФОРМАТОРОВ

Тепло, выделяющееся в обмотках и стали при работе трансформатора, повышает его температуру, вызывает старение изоляции и должно отводиться в окружающую среду. Допустимая температура установлена: для обмоток 105° С, для сердечника на поверхности 110° С и для верхних слоев масла 95° С при температуре окружающего воздуха 35° С.

Существуют трансформаторы с воздушным и масляным охлаждением. Мощные трансформаторы, как правило, выполняются с масляным охлаждением. Масло улучшает, охлаждение обмоток и защищает изоляцию от вредного действия воздуха. Для этого трансформатор помещают в стальной бак с минеральным маслом. Для трансформаторов небольшой мощности (20—30 ква) бак делается гладким. Для трансформаторов большей мощности бак делают трубчатым, увеличивая тем самым поверхность охлаждения(рис. 9-27). Выводы обмоток сделаны через проходные изоляторы на крышке бака. Для трансформаторов очень большой мощности применяются баки с радиаторами.

Рис. 9-27. Внешний вид трансформатора с трубчатым баком.

При мощности, большей 100 ква, а для напряжений свыше 6 300 в и меньшей мощности бак снабжается масло-расширителем (1, рис. 9-27). Это резервуар, соединенный трубой с баком. Уровень масла в расширителе повышается при нагреве трансформатора и падает при охлаждении его. Емкость его такая, что при всех нагрузках и колебаниях температуры окружающего воздуха от —35° до + 35° С в нем есть масло. Контролируется уровень маслоуказателем. Маслорасширитель, уменьшая поверхность сопри косновения масла с воздухом, обеспечивает меньшее загрязнение и увлажнение масла. Трансформаторы при S≥ 1 000 ква снабжаются еще выхлопной трубой 2. Это стальная труба, соединенная с баком и закрытая сверху стеклянной мембраной. При аварийном состоянии трансформатора образующиеся при испарении масла газы выдавливают мембрану и выходят из бака, предохраняя его от разрыва.

Статья на тему КПД Трансформатора

Источник

Как определяется коэффициент полезного действия трансформатора?

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Суммарная мощность, Вт Коэффициент полезного действия
10-20 0,8
20-40 0,85
40-100 0,88
100-300 0,92

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

(3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

(5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

(7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

где J — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

Если подставить данное равенство в формулу (5), то получится следующее выражение:

(10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Интересное видео: КПД трансформатора 100%

Источник

Какие методы измерения кпд трансформатора вы знаете

В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.

Коэффициент полезного действия трансформатора — это отношение отдаваемой активной мощности к потребляемой

где — мощность, потребляемая из сети, мощность, отдаваемая нагрузке.

Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод

определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.

Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).

На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:

где потери в стали (в сердечнике) и потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.

Для определения потерь обычно пользуются двумя опытами — опытом холостого хода и опытом короткого замыкания.

В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода .

Если вторичную обмотку трансформатора замкнуть накоротко,

а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.

Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector