Меню

Какие приборы для измерения температуры вы знаете



Какие бывают приборы для измерения температуры

Одним из значимых физических параметров, которые чаще всего изучаются, наблюдаются и корректируются, будь то повседневная бытовая жизнь человека, производственные циклы или лабораторные исследования, является показатель температуры. В зависимости от свойств, технических особенностей и определяющего механизма работы существует определенная классификация приборов для измерения температуры на отдельные виды: обычные жидкостные устройства или сложные, усовершенствованные электронные и лазерные измерители, которые представляют собой достойную альтернативу ставшему привычным бытовому градуснику. Безусловно, основополагающим и решающим фактором является место применения таких устройств.

Виды приборов для измерения температуры

Устройства для проведения необходимых исследований, в том числе прибор для измерения температуры воздуха, отличаются конструктивно, а также принципом работы, который используется для проведения замеров. Достаточно широкое применение у контактных и дистанционных термометров, иначе называемых пирометрами. Кроме того, классификация приборов для измерения температуры группирует:

  • Стеклянные и металлические термометры расширения жидкостные, работающие на свойстве изменения объема тел при разных значениях температуры. Спектр действия их от -190 до +500 °С.
  • Манометрические термометры, использующие зависимость между изменяющейся температурой газообразного вещества, помещенного в замкнутый объем, и давлением. Работают при значениях от -160 до +600 °С.
  • Электрические термометры сопротивления действуют, полагаясь на способность материалов-проводников менять электросопротивление при нагреве и охлаждении. Эффективны при значениях от -200 до +650 °С.
  • Термоэлектрические преобразователи – термопары. Задействуются в диапазоне от 0 до +1800 °С. Эти приборы для измерения температуры используют свойство двух разных металлов и металлосплавов вырабатывать электродвижущую силу при перемене степени нагрева спая.
  • Устройство для определения температуры от +100 до +2500 °С – пирометр излучения (фотоэлектрический, оптический, радиационный). Действие обусловлено тем, что фиксируемый показатель влияет на величину излучаемого телом тепла. Относится к бесконтактному типу измерений. Различают стационарные и мобильные, низко- и высокотемпературные пирометры.

Термометры и датчики

По иной классификации термофиксирующих устройств проводится их разделение на термометры и термодатчики.

Первые – это механические приборы, в том числе газонаполненные манометрические устройства, биметаллические, стеклянные измерители температуры и комбинированные регуляторы.

Термодатчики – это сверхточные усовершенствованные электронные приспособления для фиксирования показателей температуры в жидкостях и твердых телах. К ним следует относить термометры сопротивления, термопары, преобразователи показаний датчиков и сигнализаторы, оснащенные релейными механизмами.

Новейшие термодетекторы оснащены USB-интерфейсом, памятью для сохранения и анализа исследований, лазерным наводчиком-целеуказателем.

Измерители температуры воды

Каждый отдельный прибор для измерения температуры воды, холодных и горячих растворов характеризуется особым принципом работы. Встречаются универсальные приспособления, пригодные также для замеров показателей воздуха.

Жидкостные термометры

Стеклянные жидкостные измерители известны как самые элементарные и точные термометры, которые выпускаются прямыми и угловыми. А сфера их применения – анализ технологического оборудования, а также коммунальное хозяйство (замеры в трубопроводах). Приборы подходят для значений от -35 до +600 °С, причем в качестве чувствительного элемента чаще других применяют ртуть, а показания записывают по шкале.

В зависимости от места применения и особенностей строения различают устройства медицинские, технические, электроконтактные, жидкостные, палочные и прочие.

Конкретный прибор для измерения температуры воды выбирается с учетом допустимой погрешности при замерах.

Приспособления для определения температуры воздуха

Первый прибор для измерения температуры воздуха – это стеклянный термометр, активным жидким элементом в котором могут быть ртуть, спирт этиловый, толуол и другие вещества.

Высокоточные измерители ртутные бывают палочными и с вложенной стеклянной шкалой. Они востребованы в лабораторных исследованиях в различных областях производства и медицины. Палочный термометр оснащен прозрачной термостойкой градуированной капиллярной трубочкой, а второй вид измерителей характеризуется тем, что деления шкалы расположены позади нее на отдельной пластине, а весь механизм защищен футляром из прочного стекла.

При наличии в приборе электроконтактов его называют термосигнализатором, а чувствительная жидкость внутри резервуара и капилляра показывает настоящую температуру окружающего пространства.

Особенности терморегуляторов и сигнализаторов

Кроме вышеперечисленных, существуют и другие приборы для измерения температуры. К примеру, в качестве терморегуляторов и сигнализаторов используют стержневые дилатометры с чувствительными деталями из разнородных металлосплавов, которые удлиняются при нагреве на различную величину.

Тем же принципом характеризуется еще один вид термометра – биметаллический, со вставленной термочувствительной пружиной, спаянной с парой металлических пластинок с различным температурным расширением. В процессе нагрева пружина выгибается к пластине меньшего термокоэффициента, а по величине изгиба находят искомый показатель температуры.

Электротермометр

Для дистанционного фиксирования тепловых показателей окружающей среды в диапазоне от -15 до +125 °С отлично подходит бесконтактный прибор для измерения температуры — аспирационный электротермометр. В его устройство входят соединенные между собой шнуром измеритель и датчик.

Чувствительным элементом является тончайшая медная проволока датчика, накрученная спиралью на нитевой каркас.

Какие существуют устройства для измерения температуры тела

Температуру тела привычно измеряют градусником. Но на сегодняшний день существует множество других термометров, отличающихся по внешнему виду и основным принципам действия.

Самые распространенные приспособления, к которым принадлежит наш градусник, работают на температурном расширении ртути, керосина, спирта и др. жидкостей. Они недорогие, практичные и достаточно точные, особенно ртутные, хотя ядовитое содержимое в хрупком стеклянном корпусе несет с собой некоторый риск.

Электронный или цифровой прибор для измерения температуры тела показывает нужную величину благодаря встроенному датчику, но его стоимость много больше цены жидкостных «собратьев». Эти термометры контактные.

Инфракрасные пирометры не требуют прямого прикосновения к человеку, действуя дистанционно. Сверхчувствительный датчик за 2-15 секунд считывает величину излучения, выводя результат на дисплей. Эти бесконтактные приборы для измерения температуры превосходно подходят для семей с маленькими детьми, ситуаций со спящими больными и др. Кроме того, они применимы в быту в процессе приготовления пищи, а более мощные виды – в электроэнергетике, на стройплощадках, в металлургии и других отраслях промышленности.

Когда необходим дистанционный пирометр

Часто бывают ситуации, когда замерять температуру контактным способом невозможно или просто неудобно. Именно в таких случаях понадобится пирометр — прибор для дистанционного измерения температуры, а именно:

  • при замерах показателей сильно разогретых тел или ядовитой среды;
  • при затрудненном доступе, причем с небольшой погрешностью можно произвести измерения на расстоянии в десятки метров;
  • при наблюдении за механизмами, находящимися в движении, причем на это потребуются доли секунды;
  • при диагностике электробезопасности здания, когда именно таким измерителем удобно провести дистанционное сканирование на многочисленных удаленных участках.
Читайте также:  Турбидиметрия как метод измерения

Какими устройствами можно измерить температуру металла

В металлургической промышленности для исследования расплавленных металлосплавов необходим прочный прибор для измерения высоких температур.

Таковыми считаются уже описанные ранее пирометры. Они фиксируют на расстоянии тепловое излучение, характеризующее фактическую температуру металла. В сложных условиях сверхвысоких показателей тепла бесконтактный способ идеален. На жидкокристаллический дисплей выводятся следующие данные:

  • фактическая температура по Фаренгейту и Цельсию;
  • пограничные температуры;
  • заряд батареи.

Максимальной точности измеряемой переменной можно добиться только тогда, когда между объектом и дистанционным прибором нет помех в виде поглощающих тепло паров или твердых тел. Если же нужно сделать замеры металлосплава в транспортировочном ковше или при розливе, то следует принять условие, что температурный показатель окажется меньше фактического и будет определяться расчетами.

Для того чтобы избежать неточности такого способа, применяется другой прибор для измерения температуры металла, а именно имитатор черного тела. Он погружается в расплав и представлен в виде трубы с запаянным или открытым концом, полого конуса или стакана из тугоплавкого металла. В любом варианте термоизмеритель должен обладать повышенной жаропрочностью, химической стойкостью и отличной теплопроводностью, чтобы демонстрировать исключительно точные данные.

Измерение температуры двигателя

Длительная эксплуатация, а также периодический ремонт машин и механизмов предполагают наличие специального оборудования, в составе которого — прибор для измерения температуры двигателя. К ним относят термопары, терморезисторы и термометры расширения.

Термопары – очень удобные и широко известные среди автомобилистов приборы для измерения температуры поверхностей, обмотки и внутренней полости двигателя. С помощью этих термодатчиков можно фиксировать данные даже в труднодоступных участках двигателя, в пазах и сердечниках. Представляют собой две изолированных проволоки разного металла со спаянными с одной стороны концами, которые помещаются в определенную точку измерения. Вторые концы соединяются с милливольтметром и термометром, а сумма их показателей определяет фактическое значение температуры.

Ртутные и спиртовые термометры расширения весьма удобны для проведения необходимых измерений на доступных участках: обмотке, открытой поверхности различных деталей, а также выходящего (или входящего) из движка потока воздуха. Терморезисторы в виде медной проволочной обмотки крепят одновременно в нескольких местах двигателя, поочередно включая их, снимая фиксируемые показания и определяя среднее значение.

Вторичные приборы, используемые при измерениях температуры

Попробуем дать определение того, что такое промышленный вторичный прибор для измерения температуры. По сути, это автоматическое устройство является важным дополнением к основному измерителю, улавливающим и преобразующим зафиксированные показатели в удобочитаемую форму. Необходимо для осуществления четкого контроля, сигнализации и своевременного регулирования температуры в тех исключительных случаях, когда происходят отклонения от заданных условиями работы параметров. Отдельно выделяют стационарные и переносные вторичные электроприборы.

Как правило, вторичные приборы для измерения температуры имеют прочный защитный стальной корпус и оснащены градуированной шкалой. Регистрация значений происходит согласно диаграмме, записанной от термопар, тензорезисторов, термометров сопротивления, преобразователей и других устройств.

Рассматривая различные способы подачи информации, следует разделить вторичные приборы на регистрирующие и показывающие, одно- и многоканальные, двухфункциональные и однодиапазонные. При наличии сигнализирующего механизма данные приспособления моментально указывают на недопустимое изменение температуры, отличное от требуемой величины. Это помогает поддержанию логического протекания всех реакций и технологических процессов, в которых они задействованы.

При всем многообразии приборов, регистрирующих температурные показатели газов, жидкостей и твердых тел следует серьезно подходить к выбору нужного приспособления. Первостепенными факторами, которые надо учесть, являются допустимые границы температурных значений, максимальная удаленность, на которой можно проводить замеры (визирование), точность. И, конечно же, учитывается сфера использования конкретного вида термометра.

Источник

Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.