Меню

Какие способы измерения внутренней энергии вы знаете



Какие способы измерения внутренней энергии вы знаете

Существуют два вида механической энергии: кинетическая и потенциальная. Сумма кинетической и потенциальной энергии тела называется его полной механической энергией, которая зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует. Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии. (подробнее о Механической энергии в конспекте «Механическая энергия. Закон сохранения энергии»)

Внутренняя энергия

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U. Единицей внутренней энергии является 1 джоуль (1 Дж). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.

Внутреннюю энергию можно изменить при совершении работы. Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи, о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Конспект урока по физике в 8 классе «Внутренняя энергия».

Источник

Внутренняя энергия тела

Определение внутренней энергии тела

В результате многочисленных наблюдений и экспериментов ученые к началу ХIХ века пришли к пониманию молекулярного устройства всех тел и веществ в различных агрегатных состояниях. Стало понятно, что мельчайшими частицами являются атомы, из которых как из “кирпичиков” состоят молекулы. При ненулевой абсолютной температуре молекулы и атомы находятся в состоянии постоянного хаотического движения. Каждая движущаяся частица имеет кинетическую энергию, сумма которых будет кинетической составляющей Ek внутренней энергии. Между молекулами существует также взаимодействие, обусловленное силами электрического притяжения и отталкивания, зависящими от взаимного расположения частиц. Значит вся совокупность частиц данного тела обладает определенной величиной потенциальной энергии Eп.

Согласно молекулярно-кинетической теории внутренняя энергия U — это сумма потенциальной энергии взаимодействия молекул Eп, составляющих тело, и кинетической энергии их хаотического теплового движения Ek:

Рис. 1. Понятие внутренней энергии тела

Необходимость введения понятия о внутренней энергии обосновал в 1851 г. английский физик У. Кельвин. Данное им определение сохранилось до сих пор, но для названия он использовал старое словосочетание — “механическая энергия”. Название “внутренняя энергия” (от англ. — internal energy) ввел англичанин У. Ренкин.

Величина внутренней энергии

Внутренняя энергия тела изменяется под воздействием внешней среды, получая или отдавая тепло Q, либо совершая работу А.

Величина совершенной работы и полученное (или отданное) тепло поддаются измерению, а значит можно определить изменение внутренней энергии ΔU. Знак минус перед величиной работы означает, что работу совершило тело за счет своей внутренней энергии. Например, это может быть работа горячего пара, приводящего в механическое движение поршень. Если наоборот — над телом была совершена работа внешних сил, то в формуле (2) перед A будет знак плюс. Например, при забивании гвоздя молотком происходит его нагрев, то есть внутренняя энергия увеличивается.

Читайте также:  Как измерить пульс при аритмии сердца

Заметим, что из определения понятия внутренней энергии и формулы (2) следует, что измерить возможно только изменение этой величины (“дельту”), а не ее абсолютную величину.

Способы изменения внутренней энергии

Все способы изменения внутренней энергии тела могут быть отнесены либо к совершенным с помощью работы, либо к процессам теплопередачи (теплопереноса):

  • Внутренняя энергия тела U увеличивается, если над ним совершается работа A. Если само тело совершает работу, то его внутренняя энергия будет уменьшаться;
  • Тепло Q может быть передано телу с помощью одного (или нескольких) механизмов теплопередачи (теплопроводности, конвекции, излучения) :
  • Механизм теплопроводности связан с передачей тепла от более нагретого тела к менее нагретому. Например, когда в горячий чай погружается холодная металлическая ложка, то очень быстро она нагреется за счет этого механизма, суть которого заключается в передаче энергии “горячих” молекул чая молекулам металлической ложки;
  • Конвекция представляет собой перенос внутренней энергии в газах и жидкостях в результате циркуляции потоков вещества и последующего перемешивания. Простым примером для понимания этого механизма служит нагрев воздуха в квартирах от батарей центрального отопления. Нагретый вблизи батареи воздух начинает подниматься вверх (“всплывать”). Его место занимает холодный (более тяжелый) воздух. Таким образом, с помощью перемешивания этих потоков, происходит общий нагрев воздуха в квартире.

Рис. 2. Теплопроводность и конвекция – способы передачи тепловой энергии

  • Передача тепла с помощью излучения происходит в виде электромагнитных волн. Этот механизм включает в себя три стадии: сначала часть внутренней энергии тела преобразуется в энергию электромагнитных волн, далее следует их распространение в пространстве, которое заканчивается поглощением другим телом, в результате чего происходит изменение внутренней энергии обоих тел.

Рис. 3. Излучение – способ передачи тепловой энергии

Кроме кинетической и потенциальной энергии частиц вклад во внутреннюю энергию могут давать еще:

  • Химическая энергия, являющаяся результатом химических реакций между молекулами разных веществ. Примером реакции с выделением тепла Q (экзотермическая реакция) может служить реакция горения фосфора в кислороде:

$ 4P + 5O2 = 2P2O5 + Q $ (3);

  • Энергия электронов, вращающихся вокруг ядер в атомах;
  • Ядерная энергия.

Таким образом, в зависимости от различных условий, в которых находится вещество, те или иные энергетические источники будут давать определяющий вклад в изменение внутренней энергий. То есть внутренняя энергия — это не отдельный (специфический) вид энергии, а некоторый набор из составных частей (видов) полной энергии системы.

Что мы узнали?

Итак, мы узнали, что внутренняя энергия тела — это сумма потенциальной энергии взаимодействия молекул, составляющих тело, и кинетической энергии их хаотического теплового движения. При определенных условиях внутренняя энергия может изменяться за счет химической и ядерной энергий. Внутренняя энергия тела изменяется под воздействием внешней средой, получая или отдавая тепло Q, либо совершая работу А. Тепло Q может быть передано телу с помощью следующих механизмов теплопередачи: теплопроводности, конвекции и излучения.

Источник

Способы изменения внутренней энергии

Первый закон термодинамики и внутренняя энергия

Когда работа A совершается в результате механического движения тела как целого, или его взаимодействия с другими телами, то знание величины внутренней энергии U не требуется для расчетов. Напротив, когда работа сопровождается передачей тепла Q, то без знания закономерности, отражающей связь этих величин между собой, уже не обойтись. Эту связь устанавливает первый закон термодинамики, который формулируется следующим образом: изменение внутренней энергии ΔU в неизолированной термодинамической системе равно сумме работы внешних сил A и количества теплоты Q, переданного системе, что выражается в виде формулы:

Если же сама термодинамическая система, получив тепло Q, совершает работу А, то формула (1) принимает следующий вид:

Представления о внутренней энергии сложились далеко не сразу. В течение ХIХ века существовала теория теплорода, предложенная французским ученым Лавуазье. Считалось, что теплород — это некая субстанция (особый вид материи), при втекании которой в тело, его температура увеличивается, а при вытекании происходит уменьшение температуры. Многочисленные эксперименты, проведенные в начале ХIХ века, полностью опровергли эту теорию и развеяли миф о теплороде.

Читайте также:  Измерение сопротивления изоляции по птэ

Изменение величины внутренней энергии с помощью работы

Итак, в соответствии с первым законом термодинамики внутренняя энергия вещества, из которого состоит данное тело, изменится если над ним будет совершена работа внешними силами, либо само тело совершит работу. Приведем ряд примеров:

  • Когда мы забиваем гвоздь молотком в доску, или отрезаем ножовкой по металлу кусок трубы, то легко обнаружить, что происходит повышение температуры (разогрев) всех “участников” произведенных действий: гвоздя, молотка, ножовки и трубы. В обоих случаях была произведена работа по преодолению силы трения;
  • Если взять металлическую проволоку, и произвести некоторое количество сгибаний и разгибаний, то также нетрудно будет заметить, что температура металла за счет этих деформаций увеличилась;
  • Так как величина внутренней энергии пропорциональна температуре тела, то, следовательно, произошло ее увеличение за счет произведенной нами работы. Приведенные примеры описываются формулой (1);
  • Работа, которую совершает нагретый пар в тепловом двигателе, вращая турбину, уменьшает его внутреннюю энергию. Для этого примера справедлива формула (2).

Изменение величины внутренней энергии с помощью передачи тепла

Количество теплоты Q, полученное телом извне или, наоборот, переданное от себя другому телу — второй механизм, приводящий к изменению внутренней энергии ΔU. Передача энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей. Теплообмен возможен только между телами, имеющими разную температуру, в результате чего происходит передача части внутренней энергии от тела с более высокой температурой к телу, имеющему низкую температуру.

Существует три основных механизма теплопередачи: теплопроводность, конвекция и излучение:

  • Механизм теплопроводности связан с передачей тепла от более нагретого тела к менее нагретому. Например, когда кастрюля с холодной водой ставится на разогретую газовую или электроплиту, то нагрев происходит за счет этого механизма, суть которого заключается в передаче энергии “горячих” молекул газового пламени или молекул раскаленной электрической спирали;
  • Конвекция представляет собой перенос внутренней энергии в газах и жидкостях в результате циркуляции потоков вещества и последующего перемешивания. Простым примером для понимания характера этого механизма служит работа кондиционера в помещении, когда поток охлажденного им воздуха начинает перемешиваться с более теплым, что приводит к общему понижению температуры в квартире или офисе;
  • Передача тепла с помощью излучения происходит в виде электромагнитных волн. Этот механизм может проистекать даже в вакууме. Часть внутренней энергии преобразуется в электромагнитную энергию, которая распространяется в пространстве и после попадания на другое тело, поглощается им. Таким образом происходит изменение внутренней энергии обоих тел. Чем больше температура тела, тем больше энергии передается с помощью излучения.

Рис. 1. Излучение – один из механизмов теплопередачи.

Изменение внутренней энергии с помощью химических реакций

Внутренняя энергия системы, представляющая собой смесь разных веществ, может изменяться в результате химических реакций, в которые эти вещества вступают между собой. При этом в результате тепло Q может либо выделяться (экзотермическая реакция), либо поглощаться (эндотермическая реакция). В первом случае внутренняя энергия уменьшается, а во втором — увеличивается.

Примером реакции с выделением тепла Q может служить реакция горения метана в кислороде:

$ СH_4 + 2O_2 = CO_2 + 2*H_2O + Q $ (3).

Пример реакции с поглощением тепла — разложение карбоната кальция СaCO3 на углекислый газ CO2 и оксид кальция (негашеная известь) CaO:

$ СaCO_3 = CaO + CO_2 – Q $ (4).

Все перечисленные способы изменения внутренней энергии можно представить в виде следующей таблицы:.

Рис. 2. Таблица изменений внутренней энергии физических тел.

Физики научились регистрировать и измерять тепловое излучение, что позволило создать удивительные приборы, которые называются тепловизорами. Этими устройствами можно бесконтактно (на расстоянии) измерять температуру на поверхности различных тел, в том числе на теле человека. Тепловизоры применяются в медицине, в военной технике, в промышленности.

Рис. 3. Тепловизор — прибор, использующий тепловое излучение.

Что мы узнали?

Итак, мы узнали, что внутреннюю энергию тела можно изменить либо с помощью совершения работы А, либо с помощью передачи количества теплоты Q. Существует три основных механизма теплопередачи: теплопроводность, конвекция и излучение. Внутренняя энергия может также изменяться в результате химических реакций.

Источник

Какие способы измерения внутренней энергии вы знаете

Связь внутренней энергии с температурой

Кинетическая энергия движения частиц и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

Внутренняя энергия тела не является постоянной величиной и связана с изменением температуры тела:

1. при повышении температуры внутренняя энергия тела увеличивается, т.к. молекулы тела начинают активнее двигаться, расстояние между ними увеличивается и возрастает их кинетическая и потенциальная энергия;

2. при понижении температуры внутренняя энергия тела уменьшается, т.к. молекулы тела начинают двигаться менее активно, расстояние между ними уменьшается и понижается их кинетическая и потенциальная энергия.

Таким образом, температура – это главная характеристика внутренней энергии тела.

История развития представлений об изменении внутренней энергии

Перед тем, как рассмотреть конкретные возможные причины процесса изменения внутренней энергии тела заметим, что теория, которая связывает энергию движения и взаимодействия частиц со внутренней энергией тела, сложилась не сразу.

Например, почти до конца XIX века считалось, что существует такая условная субстанция, как теплород. Считалось, что когда теплород втекает в тело, то его температура увеличивается, как и внутренняя энергия, а когда вытекает, температура с внутренней энергией уменьшается. Понятие теплорода было введено в конце XVIII века Лавуазье, а уже на рубеже XVIII и XIX веков были проведены первые эксперименты, подтверждавшие несостоятельность этой теории.

Кроме того, для описания процесса сжигания топлива существовала аналогичная теория, которая говорила, что существует такая гипотетическая материя, как флогистон. Считалось, что он содержится во всех горючих веществах и при их горении высвобождается и дает высокую температуру. Термин был введен впервые в начале XVIII века учеными Иоганном Бехером и Георгом Шталем . Позже и теория флогистона была раскритикована и сегодня не упоминается в научных трудах, как и теория теплорода.

Мы будем рассматривать возможные варианты изменения внутренней энергии с точки зрения развития науки, поэтому сначала обсудим изменение внутренней энергии из-за совершения работы. Убедиться в том, что совершение работы влияет на процесс изменения внутренней энергии, можно на простом опыте – потрите руки друг о друга, и вы заметите, как ладони нагреваются, это и будет свидетельствовать об изменении внутренней энергии. Что демонстрирует этот опыт? Он наглядно демонстрирует, что при совершении механической работы (трение ладоней) повышается их внутренняя энергия.

Изменение внутренней энергии вследствие совершения работы

Вы уже знакомы с понятием механическая работа тела, она связана с перемещением тела при приложении к нему определенной силы. Если совершается механическая работа, то меняется энергия тела, аналогичное можно утверждать конкретно про внутреннюю энергию тела. Это удобно изобразить на схеме:

Первые опыты по доказательству несостоятельности теории теплорода и подтверждению влияния процесса совершения работы на изменение внутренней энергии тела провел английский инженер и физик Бенджамин Румфорд, который в конце XVIII века при изготовлении пушек занимался сверлением их ствола. Он заметил, что при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение конской тягой. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура резко поднялась. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой (см. Рис. 1). В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Румфорд объяснил это явление с помощью представления о теплоте как особом виде движения.

Опыт Румфорда доказал, что процесс совершения работы оказывает непосредственное влияние изменение внутренней энергии тела, и внутренняя энергия тела может быть изменена при совершении работы.

Таким образом, работа является мерой изменения внутренней энергии при превращении механической энергии во внутреннюю или внутренней энергии в механическую.

Изменение внутренней энергии вследствие теплопередачи

Второй способ изменения внутренней энергии тела мы можем легко наблюдать каждый день в повседневной жизни, и он был давно всем известен – это теплопередача.

Теплопередача – это процесс изменения внутренней энергии без совершения работы над телом или самим телом.

Процессы теплопередачи делятся на три вида, которые удобно изобразить на схеме:

Более подробно о каждом из этих видов теплопередачи мы поговорим на последующих уроках.

Отметим, что процессы теплопередачи и совершения работы, как правило, протекают параллельно и одновременно влияют на изменение у тела внутренней энергии.

Теперь мы можем изобразить два варианты изменения внутренней энергии тела на схеме:

На следующем уроке мы уделим особое внимание описанию процесса теплопроводности при теплопередаче.

Источник