Какие существуют методы измерения астрономия

Методы исследования в астрономии

Методы астрономических исследований

Компоненты мегамира

Космос (мегамир) – весь мир, окружающий планету Земля.

Весь космос мы наблюдать не можем по ряду причин (техническим: разбегание галактик → свет не успевает долететь).

Вселенная – часть космоса, доступная наблюдению.

Космология – изучает строение, происхождение, эволюцию и будущую судьбу Вселенной в целом.

Основу этой дисциплины составляют астрономия, физика и математика.

Астрономия (буквально – наука о поведении звезд) – более узкая отрасль космологии (наиболее важная!) – наука о строении и развитии всех космических тел.

Методы исследования в астрономии

В астрономии непосредственно можно наблюдать только объекты, испускающие электромагнитное излучение , в том числе свет.

Основную информацию получают при использовании оптических приборов.

1. Оптическая астрономия – изучает видимые (т.е. светящиеся) объекты.

Наблюдаемая, или светящаяся, материя либо сама испускает видимый свет в результате идущих внутри нее процессов (звезды), либо отражает падающие лучи (планеты Солнечной системы, туманности).

В 1608 г. Г. Галилей направил на небо свою простую подзорную трубу, совершив тем самым революцию в области астрономических наблюдений. Сейчас астрономические наблюдения проводят с помощью телескопов.

Оптические телескопы бывают 2-х типов: рефракторные (свет собирает линза → необходимы большие линзы, которые могут гнуться под собственным весом → искажение изображения) и рефлекторные (свет собирает зеркало, таких проблем нет → большинство профессиональных телескопов — рефлекторы).

В современных телескопах человеческий глаз заменен фотопластинками или цифровыми камерами, которые в состоянии аккумулировать световой поток на протяжении больших временных промежутков, что позволяет обнаруживать еще более мелкие объекты.

Телескопы устанавливаются на высоких горных вершинах, где в наименьшей степени сказывается влияние атмосферы и света больших городов на изображение. Поэтому сегодня большая часть профессиональных телескопов сконцентрирована в обсерваториях, которых не так много: в Андах, на Канарских о-вах, на гавайских вулканах (4205 м над ур. моря, на потухшем вулкане – самая высокая обсерватория в мире) и в некоторых особо изолированных местах Соединенных Штатов и Австралии.

Благодаря международным соглашениям, стрáны, в которых нет подходящих для установки телескопов мест, могут установить свою аппаратуру в местах с такими условиями.

Самый крупный телескоп – строится в Чили Южно-Европейской обсерваторией (включает систему из 4 телескопов диаметром 8,2 м каждый).

В 1990 г. на орбиту выведен оптический телескоп «Хаббл» (США) (h = 560 км).

Его длина – 13,3 м, ширина – 12 м, зеркало диаметром 2,4 м, общая масса – 11 т,

Благодаря ему получено глубокое, никогда ранее недостижимое изображение звездного неба, наблюдались планетарные системы в стадии формирования, получены данные о существовании огромных черных дыр в центрах разных галактик. Телескоп должен закончить работу к 2005 г; сейчас запущен другой более современный.

2. Неоптическая астрономия – изучает объекты, испускающие ЭМ-излучение за рамками видимого света.

Электромагнитное излучение – форма электрической и магнитной энергии, которая распространяется в космосе со скоростью света. Единица измерения – длина волны (м).

ЭМ-спектр условно разделен на полосы, характеризующиеся определенным интервалом длин волн. Четкие границы между диапазонами определить нельзя, т.к. они часто перекрывают друг друга.

Аппаратура для неоптической астрономии сильно отличается от традиционных телескопов (больше напоминает счетчики частиц, чем телескопы) и в большинстве случаев находится на борту спутников на орбите Земли, т.к. земная атмосфера поглощает почти всё электромагнитное излучение, идущее из космоса, кроме видимого. → на Земле объекты, испускающие это ЭМ-излучение нельзя зафиксировать.

Такая аппаратура используется с 1930-х гг. Первый искусственный спутник Земли с астрономической аппаратурой был запущен в 1957 г. СССР. Помимо астрономических, спутники выполняют военные, экологические, телекоммуникационные и др. задачи.

В соответствии с участками ЭМ-спектра выделились разные разделы неоптической астрономии:

Ø Радиоастрономия фиксирует радиоизлучение (ДВ).

Радиотелескоп состоит из трех частей : параболической антенны, усилителя сигналов и системы анализа и регистрации данных. Диаметр антенны обычно составляет десятки метров (до 300 м), ее можно перенаправлять в желаемом направлении неба.

Радиотелескопы чувствительнее самых мощных оптических телескопов

в 2 раза → возможность изучения очень удаленных объектов (2-3 млрд. световых лет.).

Ø Инфракрасная астрономия . Телескопы для наблюдения в ИК-диапазоне устанавливают на большой высоте: на воздушных шарах, самолетах или чаще всего на спутниках. При помощи таких телескопов наблюдают относительно холодные объекты (планеты, пылевые облака).

Ø Ультрафиолетовая астрономия . Наблюдения почти полностью ведутся в космосе. Благодаря УФ-астрономии открыта потеря материи звездами в виде звездного ветра, подтверждены выбросы водяного пара кометами и мн. др.

Ø Рентгеновская астрономия . Наблюдения также ведутся в космосе. Благодаря такой аппаратуре было открыто рентгеновское излучение Солнца и зарегистрировано

350 космических источников рентгеновских лучей во Вселенной (пульсары и т.п.).

Ø Гамма-астрономия . В 1991 г. на орбиту запущен спутник, предназначенный для различных экспериментов в гамма-астрономии. Благодаря такой аппаратуре установлено диффузное излучение нашей Галактики и выявлены ядра галактик с особо интенсивным излучением.

3. Нейтринная астрономия – изучение процессов, происходящих в звездах, с помощью фиксации элементарных частиц нейтрино.

Нейтрино излучаются всеми звездами в результате ядерных реакций → это источник информации о процессах в космических телах.

Нейтрино – элементарные частицы, не имеющие электрического заряда. Пока не ясен вопрос, имеют ли эти частицы массу (если да, то она очень маленькая, меньше 1/25000 массы электрона). Рождающиеся в Солнце нейтрино попадают на Землю в заметном количестве. Через 1 см 2 земной поверхности постоянно проходят миллиарды нейтрино. Образовавшиеся в центре Солнца нейтрино не поглощаются окружающей материей, поэтому они способны очень быстро достичь Земли. С Земли можно обнаружить только «солнечные» нейтрино.

Для обнаружения нейтрино используют огромные баки с тетрахлорэтиленом. Атомы Cl, взаимодействуя с нейтрино, могут превращаться в Ar, тем самым обнаруживая попадание нейтрино. Чтобы избежать неожиданного проникновения посторонних сигналов в результате прохода частиц других типов, ловушки для нейтрино устанавливают высоко в горах (на высоте 1,5 км – Баксанское ущелье на Кавказе) или на морском дне. Однако и в этих огромных аппаратах выявляется всего несколько частиц в сутки.

4. Изучение объектов Солнечной системы. Осуществляется с помощью дистанционных лабораторий на борту автоматических межпланетных станций (с 1960-х гг.) – сейчас исследованы все планеты, кроме Плутона.

При запуске таких лабораторий стараются рассчитать моменты, когда хотя бы 2 планеты должны выстроиться на своих орбитах в линию («парад планет»), чтобы сэкономить и отправить зонд сразу на несколько планет.

Для исследования Плутона готовится зонд; но чтобы долететь до пункта назначения, ему потребуется почти 12 лет при скорости 18 км/с.

Источник

Какие существуют методы измерения астрономия

Астрономия – наука, изучающая небесные объекты и Вселенную в которой мы живём.

Поскольку астрономия как наука не имеет возможности провести эксперимент, то основным источником информации являются сведения, которые исследователи получают при наблюдении.

В связи с этим в астрономии выделяют область, называемую наблюдательной астрономией.

Суть наблюдательной астрономии заключается в получении необходимой информации об объектах в космосе с помощью применения таких приборов как телескопы и иное оборудование.

Наблюдения в астрономии позволяют, в частности, отслеживать закономерности в свойствах тех или иных изучаемых объектов. Поученные результаты изучения одних объектов можно распространить на иные объекты, обладающие схожими свойствами.

Готовые работы на аналогичную тему

Разделы наблюдательной астрономии

В наблюдательной астрономии деление на разделы связано с разбиением электромагнитного спектра на диапазоны.

Оптическая астрономия – способствует наблюдениям в районе видимой части спектра. При этом в наблюдательных аппаратах применяются зеркала, линзы, твердотельные детекторы.

При этом область видимого излучения лежит в середине диапазона исследуемых волн. Длина волн видимого излучения составляет интервал от 400 нм до 700 нм.

Инфракрасная астрономия основана на поиске и исследовании инфракрасного излучения. При этом длина волн превышает предельное значение для наблюдений с кремниевыми детекторами: около 1 мкм. Для изучения выбранных объектов в данной части диапазона в основном исследователями применяются телескопы – рефлекторы.

Радиоастрономия – основана на наблюдениях излучения с длиной волны от миллиметров до десятков миллиметров. Принципом своей работы приёмники, использующие радиоизлучение, сопоставимы с теми приёмниками, которые применяются в трансляции радиопередач. Однако, приёмники радиоизлучения обладают большей чувствительностью.

Рентгеновская астрономия, гамма-астрономия и ультрафиолетовая астрономия входят в астрономию высоких энергий.

Методы наблюдений в астрономии

Получение искомых данных возможно при проведении астрономами регистрации электромагнитного излучения. Кроме того, исследователи проводят наблюдения нейтрино, космических лучей или гравитационных волн.

Оптическая и радиоастрономия в своей деятельности использует наземные обсерватории. Причиной этого является то, что на длинах волн данных диапазонов атмосфера нашей планеты имеет относительную прозрачность.

Обсерватории в основном расположены на больших высотах. Это связано с уменьшением поглощения и искажений, которые создает атмосфера.

Отметим, ряд волн инфракрасного диапазона существенно поглощается молекулами воды. Из-за этого обсерватории часто строят в сухих местах на большой высоте или в космосе.

Аэростаты или космические обсерватории в основном используются при работе в областях рентгеновской, гамма- и ультрафиолетовой астрономии, а также за рядом исключений, и в астрономия в далеком ИК- диапазоне. При этом наблюдая атмосферные ливни можно обнаружить создавшее их гамма-излучение. Отметим, что изучение космических лучей в настоящий момент является быстро развивающейся сферой астрономической науки.

Расположенные близко к Солнцу и к Земле объекты можно видеть и измерять при их наблюдении на фоне иных объектов. Такие наблюдения использовались для построения моделей орбит планет, а также для определения их относительных масс и гравитационных возмущений. Результатом стало открытие Урана, Нептуна и Плутона.

Радиоастрономия – развитие этой области астрономии стало результатом открытия радиоизлучения. Дальнейшее развитие этой области привело к открытию такого явления как космическое фоновое излучение.

Нейтринная астрономия — данная область астрономической науки использует в своем арсенале нейтринные детекторы, расположенные в основном под землёй. Средства нейтринной астрономии помогают получать сведения о процессах, которые исследователи не могут наблюдать в телескопы. Примером могут служить процессы, происходящие в ядре нашего Солнце.

Приёмники гравитационных волн имеют возможность регистрировать следы даже таких явлений как столкновение столь массивных объектов как нейтронные звезды и черные дыры.

Космические автоматические аппараты активно используются в астрономических наблюдениях за планетами Солнечной системы. Особенно активно с их помощью изучается геология и метеорология планет.

Условия для проведения астрономических наблюдений.

Для лучшего наблюдения астрономических объектов важны следующие условия:

  1. Исследования проводятся в основном в видимой части спектра при использовании оптических телескопов.
  2. Наблюдения в основном проводятся в ночное время поскольку качество получаемых исследователями данных зависит от прозрачности воздуха и условий видимости. В свою очередь условия видимости зависят от турбулентности и наличия тепловых потоков в воздухе.
  3. Отсутствие полной Луны даёт преимущество в наблюдениях за астрономическими объектами. Если полная Луна есть на небе, то это даёт дополнительную засветку и осложняет наблюдение за слабыми объектами.
  4. Для оптического телескопа наиболее подходящим местом наблюдения является открытий космос. В космическом пространстве, возможно проводить наблюдения которые не зависят от капризов атмосферы, за отсутствием таковой в космосе. Недостатком такого способа наблюдения является высокая финансовая стоимость подобных исследований.

После космоса наиболее подходящим местом для наблюдения за космическим пространством являются пики гор. Горные пики имеют большое количество безоблачных дней и имеют качественные условия видимости, связанные с хорошим качеством атмосферы.

Примером таких обсерваторий являются горные пики островов Мауна-Кеа и Ла-Пальма.

Уровень темноты в ночное время также играет большую роль в астрономических наблюдениях. Создаваемое человеческой деятельностью искусственное освещение мешает качественному наблюдению слабых астрономических объектов. Однако, помочь проблеме помогает использование плафонов вокруг уличных фонарей. В результате количество света поступающего на поверхность земли увеличивается, а излучение, направленное в сторону неба уменьшается.

  • Влияние атмосферы на качество наблюдений может быть велико. Для получения лучшего изображения используют телескопы с дополнительной коррекцией размытия картинки. Для улучшения качества также используется адаптивная оптика, спекл-интерферометрия, апертурный синтез или размещении телескопов в космосе.
  • Источник

    Какие существуют методы измерения астрономия

    Одна из основных задач астрономии — узнать расстояние для того или иного небесного тела,

    Какие же системы и меры расчета используются в астрономии?

    Астрономическая единица (а. е).

    Данная единица используется для измерения расстояний внутри нашей Солнечной системы или внутри иных планетных систем. Такая единица равняется радиусу орбиты Земли вокруг Солнца. Или же среднему расстоянию от нашей планеты до Солнца. Таким образом, одна астрономическая единица получается равная примерно 150 000 000 км.

    В пользу использования астрономической единицы, в частности, говорит возможность сравнивать измеряемые расстояния с удаленностью Земли от Солнца. Измерения таких больших чисел в километрах неудобно и затруднительно.

    Толчком к появлению астрономической единицы послужило открытие того, что Земля обращается вокруг Солнца, и разработка Кеплером законов небесной механики. С помощью расчетов удалось установить точное расстояние от Земли до Солнца и до планет Солнечной системы.

    Готовые работы на аналогичную тему

    В дальнейшем благодаря развитию науки и техники удалось уточнить расстояния от Земли до Солнца и планет нашей системы.

    В 1962 году специалистам удалось измерить при помощи радиолокационных сигналов расстояние от Земли до Солнца. В результате эталоном была принята средняя величина, которая равна 149597870,7 км. С таким значением данное определение и содержится теперь в Международной системе единиц СИ.

    Однако, наблюдения показали, что астрономическая единица не является постоянной. Так, выяснилось, что в течении каждых 7 лет длина астрономической единицы увеличивается на метр. Точного объяснения такого увеличения расстояния нет. Однако, наиболее поддерживаемой теорией является идея о том, что причиной является уменьшение массы Солнца из-за воздействия солнечного ветра.

    Световой год

    Световой год – это единица измерения расстояний в космосе, которая, однако, не является системной и применяется в основном в учебной и популярной литературе по астрономии.

    Под световым годом понимается расстояние, которое пройдет луч света за 365,25 земных дня (т. е. за земной год) в вакууме, при этом не луч не должен на себе испытывать воздействие магнитных полей.

    Световой год равен 9,46 триллионам километров

    В научной практике световой год применяется редко и в основном для выражения расстояний до не особо далеких объектов в космосе. Причиной этого является, то, что при выражении расстояния до далеких галактик в световых годах, число оказывается слишком большим и неудобным в расчетах. Поэтому для подобных расчетов применяется парсек.

    Парсек

    Парсек – происходит от сокращения «параллакс секунда», и является внесистемной единицей измерения, с помощью которой происходит определение расстояния до очень отдаленных объектов исследования.

    Для понимания того, что такое парсек необходимо узнать, что такое параллакс.

    Параллакс состоит в том, что при перемещении наблюдателя в процессе наблюдения за двумя отдаленными друг от друга телами, расстояние между данными объектами также меняется.

    При наблюдении за звездами параллакс возникает при изменении положения звезды при смещении Земли на один градус её орбиты. Это называется годичный параллакс и измеряется в угловых секундах. В результате если годичный параллакс равен одной угловой секунде, то и расстояние до звезды оценивается в один парсек. Точное число парсека оценивают в 3,0856776•1016 метра или 3,2616 светового года. 1 парсек равен примерно 206 264,8 а. е.

    Методы определения расстояний в астрономии

    Метод лазерной локации и радиолокации.

    Метод лазерной локации заключается в отправлении в сторону объекта наблюдения радиосигнала. После этого объект отражает сигнал и тот возвращается обратно. В результате, время, которое тратится на преодоления расстояния, помогает определить расстояние до цели. При этом точность радиолокации составляет всего несколько километров.

    Лазерная локация предполагает отправку светового луча, который помогает таким же образом определить расстояние до цели, но уже с точностью до долей сантиметра.

    Метод тригонометрического параллакса.

    Тригонометрический параллакс является одним из самых простых методов измерения расстояния в космосе. Данный метод основан на школьных знаниях из геометрии.

    Итак, рассмотрим метод тригонометрического параллакса.

    Начертим отрезок (иначе именуемый базисом) между двумя точками на поверхности Земли. Затем мы выбираем нужный объект на небе, расстояние до которого нам нужно определить, и обозначаем его как вершину получившегося у нас треугольника. Потом мы замеряем углы между начертанным базисом и прямыми, которые были проведены от выбранных точек до нужного нам объекта в небе. А поскольку нам известна сторона и два прилежащих к ней угла треугольника, то можно определить и остальные его элементы.

    Рисунок 1. Тригонометрический параллакс. Автор24 — интернет-биржа студенческих работ

    В первое время в роли базиса выступал радиус Земли, однако, впоследствии в качестве базиса стали брать средний радиус орбиты Земли, т. е. астрономическую единицу. Это позволяло узнать расстояние до более отдаленных небесных тел. Угол, который лежал в данном случае напротив базиса называется годичным параллаксом.

    Такое измерение расстояние до звезд не очень удобно при исследованиях с Земли. Причиной являются помехи атмосферы. Поэтому определение годичного параллакса для объектов расположенных на расстоянии больше чем в 100 парсек не удавалось.

    Выходом стал, в частности, запуск в 1989 год Европейским космическим агентством космического телескопа Hipparcos. Этот телескоп способен определить расстояние до звезд в 1000 парсек.

    Итогом стало получение трехмерной карты всех звезд, расположенных вокруг Солнца. А в 2013 году тоже Агентство запустило ещё более точный аппарат – Gaia. Точность данного аппарата в 100 раз лучше прежнего. Это позволяет наблюдать все звезды Млечного Пути.

    Метод стандартных свечей.

    Метод стандартных свечей основан на том, что чем дальше от наблюдателя источник света, тем он кажется более тусклым. В результате возможно сравнивать расстояние до нужных звезд с расстояниями до звезд с известными нам мощностями.

    При использовании данного метода за основу стандартных свечей берут источники, мощность которых известна исследователям. Таким источником может выступать звезда, температура поверхности и яркость которой известна. Такие расчеты помогают получить общие данные о расстоянии до галактики, в которой эта звезда расположена.

    Недостатками такого метода является его сложность и не очень высокая точность.

    Уникальные стандартные свечи.

    При помощи данного метода удается более точно определить расстояния до звезды, опираясь на характеристики цефеид.

    Цефеиды – переменные пульсирующие звезды, которые используются земными астрономами как своеобразные маяки – стандартные свечи. Изучая их физические свойства, астрономам удалось узнать, что цефеиды обладают такой особенностью как период пульсации. Период пульсации и яркость переменных звезд дают возможность узнать светимость и соответственно расстояние до данной звезды.

    Рисунок 2. Цефеиды. Автор24 — интернет-биржа студенческих работ

    Также в роли уникальных стандартных свечей могут выступать сверхновые, чья светимость известна, а также красные гиганты.

    Источник

    Поделиться с друзьями
    Моя стройка
    Adblock
    detector