Меню

Каково основное преимущество шлицевых соединений по сравнению со шпоночными соединениями



§ 6. СБОРКА ШЛИЦЕВЫХ СОЕДИНЕНИЙ.

образуются выступами и впадинами вала и ступицами по всей окружности сопряжения, направленными вдоль оси. Они предназначены для передачи больших крутящих моментов.

По сравнению со шпоночными такие соединения имеют следующие преимущества:

1. При шлицевом соединении достигается более точное центрирование детали по валу.

2. Вал почти не ослаблен, особенно при большом количестве шлицев, когда впадины можно сделать неглубокими.

3. При сборке шлицевых соединений не требуется никаких слесарно-пригоночных операций, так как после механической обработки деталей таких соединений получается полная их взаимозаменяемость (ГОСТ 2.409-68).

На рис. 81, а, б, в показаны прямобочные, эвольвентные и треугольные профили шлицев. Самый распространенный профиль шлицев — прямобочный, но за последнее время стали применять шлицы с эвольвентным профилем, обеспечивающим лучшее центрирование деталей, чем прямобочный. Треугольные шлицы используют только при небольших нагрузках и на валах небольшого диаметра.

Рис. 81. Шлицевое соединение:

а — прямобочное, б — эвольвентное, в — треугольное, г — соединение, центрированное по боковым сторонам, д — соединение, центрированное по наружному диаметру, е — соединение, центрированное по внутреннему диаметру

Шлицевые соединения, имеющие скользящую, ходовую или легкоходовую посадки, собирают вручную без пригонки. Шлицевые соединения различают по способу центрирования втулки относительно вала.

Существуют три способа центрирования вала:

по боковым сторонам шлицев (рис. 81, г);

по наружному диаметру (рис. 81, д) ;

по внутреннему диаметру (рис. 81, е).

Когда точность центрирования не имеет большого значения и в то же время необходимо обеспечить достаточную прочность соединения, применяют центрирование по боковым сторонам шлицев (карданное сочленение в автомобилях).

Когда в механизмах необходимо получить кинематическую точность (станки, автомобили и др.), применяют центрирование по одному из диаметров.

Центрирование по наружному диаметру, как более экономичное, применяют для термически необработанных охватывающих деталей, а также для таких деталей, у которых твердость после термической обработки допускает калибрование протяжкой.

Если твердость охватывающей детали не позволяет выполнять калибрование, то применяют центрирование по внутреннему диаметру.

Неподвижные соединения, имеющие глухую и тугую посадки, собирают в специальных приспособлениях или же с подогревом детали перед напрессовкой.

Подвижные шлицевые соединения после сборки проверяют на качку, неподвижные — на биение.

Источник

Перечислите конструкции и преимущества шлицевых соединений сравнительно со шпоночными и дайте краткую характеристику их расчета на прочность.

Шпоночное соединение образуют вал, шпонка и ступица колеса (шкива, звездочки и др.). Шпонка представляет собой стальной брус, устанавливаемый в пазы вала и ступицы. Она служит для передачи вращающего момента между валом и ступицей. Основные типы шпонок стандартизованы. Шпоночные пазы на валах получают фрезерованием дисковым или концевыми фрезами, в ступицах протягиванием.

Достоинства шпоночных соединений — простота конструкции и сравнительная легкость монтажа и демонтажа, вследствие чего их широко применяют во всех отраслях машиностроения.

Недостаток — шпоночные пазы ослабляют вал и ступицу насаживаемой на вал детали. Ослабление вала обусловлено не только уменьшением его сечения, но главное, значительной концентрацией напряжений изгиба и кручения, вызываемой шпоночным пазом. Шпоночное соединение трудоемко в изготовлении: при изготовлении паза концевой фрезой требуется ручная пригонка шпонки по пазу; при изготовлении паза дисковой фрезой крепление шпонки в пазу винтами (от возможных осевых смещений).

Расчет шпоночных соединений

Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют на прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят.

Соединения призматическими шпонками проверяют по условию прочности на смятие:

Сила, передаваемая шпонкой, F1=2*10 3 T/d. На смятие рассчитывают выступающую из вала часть шпонки.

При высокой фаски шпонки площадь смятия

следовательно,

Где Т- передаваемый момент, H-м; d – диаметр вала, мм; h, r1 – высота шпонки и глубина паза нп валу, мм (таблица величин); — допускаемые напряжения смятия, lp – рабочая длина шпонки; для шпонок с плоскими торцами lp=l, со скругленными lp=l

При проектировочных расчетах после выбора размеров поперечного сечения шпонки Ь и h по таблице определяют расчетную рабочую длину 1 шпонки по формуле (4.1).

Длину шпонки со скругленными торцами lp= 1+Ь или плоскими торцами lp== 1 назначают из стандартного ряда.

Длину ступицы 1см принимают на 8. 10 мм больше длины шпонки. Если длина ступицы больше величины 1,5d,, то шпоночное соединение целесообразно заменить на шлицевое или соединение с натягом.

Соединения сегментными шпонками проверяют на смятие:

Где lp=l – рабочая длина шпонки; (h –t) – рабочая глубина в ступнице.

Сегментная шпонка узкая, поэтому в отличие от призматической ее проверяют на срез.

Условие прочности на срез

Где b – ширина шпонки; — допускаемое напряжение на срез шпонки.

Стандартные шпонки изготовляют из специального сортамента среднеуглеродистой чистотянутой стали с 600 Н/мм2 чаще всего из сталей 45, Ст б.

Читайте также:  Урок сравнение при описании внешности

Допускаемые напряжения смятия для шпоночных соединений:

при стальной ступице [ ]см = 130. 200 Н/мм2

при чугунной [ ]см 80. 110 Н/мм2. Большие значения принимают при постоянной нагрузке, меньшие при переменной и работе с ударами.

При реверсивной нагрузке [ ]см снижают в 1,5 раза.

Допускаемое напряжение на срез шпонок 70. 100 Н/мм2.

Большее значение принимают при постоянной нагрузке.

Шлицевое соединение образуют выступы зубья на валу и соответствующие впадины шлицы в ступице. Рабочими поверхностями являются боковые стороны зубьев. Зубья вала фрезеруют по методу обкатки или накатывают в холодном состоянии профильными роликами по методу продольной накатки. Шлипы отверстия ступицы изготовляют протягиванием.

Шлицевые соединения стандартизованы и широко распространены в машиностроении.

Достоинства шлицевых соединений по сравнению со шпоночными.

1. Лучшее центрирование соединяемых деталей и более точное направление при их относительном осевом перемещении.

2. Меньшее число деталей соединения: шлицевое соединение образуют две детали, шпоночное три, четыре.

З. При одинаковых габаритах возможна передача больших вращающих моментов за счет большей поверхности контакта.

4. Большая надежность при динамических и реверсивных нагрузках.

5. Большая усталостная прочность вследствие меньшей концентрации напряжений изгиба, особенно для эвольвентных шлицев.

б. Меньшая длина ступицы и меньшие радиальные размеры.

Недостатки более сложная технология изготовления, а следовательно, и более высокая стоимость.

Расчет шлицевых соединений

Основными критериями работоспособности шлицевых соединений являются сопротивления рабочих поверхностей смятию и изнашиванию.

Параметры соединения выбирают по таблицам стандарта в зависимости от диаметра вала, а затем проводят расчет по критериям работоспособности. Смятие и изнашивание рабочих поверхностей связаны с действующими на контактирующих поверхностях напряжениями см.

Упрощенный (приближенный) расчет основан на ограничении напряжений смятия допускаемыми значениями см., назначаемыми на основе опыта эксплуатации подобных конструкций:

где Т- расчетный вращающий момент (наибольший из длительно действующих моментов при переменном режиме нагружения), Н-м;

К3- коэффициент неравномерности распределения нагрузки между зубьями (зависит от точности изготовления и условий работы),

К = 1,1. 1,5;d- средний диаметр соединения, мм; число z -зубьев; h -рабочая высота зубьев, мм; lp-рабочая длина соединения, мм; см допускаемое напряжение смятия, Н/мм2.

Для соединений с прямобочными зубьями:

f – фаска зуба.

Источник

31. В чем преимущества шлицевого соединения по сравнению со шпоночным

По сравнению со шпоночными такие соединения имеют следующие преимущества:

1. При шлицевом соединении достигается более точное центрирование детали по валу.

2. Вал почти не ослаблен, особенно при большом количестве шлицев, когда впадины можно сделать неглубокими.

3. При сборке шлицевых соединений не требуется никаких слесарно-пригоночных операций, так как после механической обработки деталей таких соединений получается полная их взаимозаменяемость (ГОСТ 2.409-68).

, или ,

где Рr – мощность, потерянная в передаче.

Одноступенчатые передачи имеют следующие КПД: фрикционные – 0,85…0,9; ременные – 0,90…0,95; зубчатые – 0,95…0,99; червячные – 0,7…0,9; цепные – 0,92…0,95;

моменты на валах. Моменты Т1 (Н·м) на ведущем и Т2 на ведомом валах определяют по мощности (кВт) и частоте вращения (об./мин) или угловой скорости (с -1 ):

, или,

где ω1 = .

Связь между вращающими моментами на ведущем Т1 и ведомом Т2 валах выражается через передаточное отношение u и КПД η:

34. Классификация механических передач

Механические передачи вращательного движения делятся:

— по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

— по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие(мультипликаторы);

— по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными,пресекающимися и перекрещивающимися осями валов.

Замедляющие передачи получили большее распространение по сравнению с ускоряющими. Это объясняется тем, что скорости вращения валов двигателей различного вида, как правило, значительно выше скоростей валов рабочих машин. Более быстроходные двигатели имеют меньшие размеры по сравнению с тихоходными двигателями той же мощности, так как с увеличением частоты вращения уменьшаются силы и моменты, действующие на детали двигателя. Например, передавать вращение от быстроходной газовой турбины на вал несущего винта вертолета через специальную замедляющую зубчатую передачу (редуктор) значительно выгоднее, чем применять имеющий большие габаритные размеры и массу тихоходный двигатель, вал которого соединялся бы непосредственно с винтом. Из всех типов передач наиболее распространенными являются зубчатые.

В каждой передаче различают два основных вала: входной и выходной, или ведущий и ведомый. Между этими валами в многоступенчатых передачах располагаются промежуточные валы.

40. Расчет на прочность зубчатых передач

Расчёт на контактную прочность рабочих поверхностей зубьев является основным критерием работоспособности зубчатых передач. Расчёт производят при контакте зубьев в полюсе зацепления П. Контакт зубьев рассматривают как контакт двух цилиндров с радиусом р1 и р2. При этом наибольшие контактные напряжения определяют по формуле Герца:

(2.3.16)

Расчет по контактной прочности сводится к проверке условия . После преобразования формулы Герца для контакта цилиндрических поверхностей получают формулу для определения межосевого расстояния

(2.3.17)

где Т2 – вращающий момент на тихоходном валу, Н м; u — передаточное число; Ка = 49,5 МПа – для прямозубых колес; — коэффициент ширины колеса по межцентровому расстоянию, его можно определить по формуле где — выбирается из справочных таблиц, — допускаемое контактное напряжение, где — коэффициент долговечности, -предел контактной выносливости, определяется для заданного материала из таблиц, = 1,1- 1,3 — допускаемый коэффициент запаса прочности, — базовое число циклов нагружения, — расчетное число циклов нагружения, Lh – полный ресурс в час. Определив геометрические размеры передачи, ее проверяют на контактную прочность по формуле:

Читайте также:  Сравнить два куста реестра

(2.3.18)

где — коэффициент нагрузки при расчете по контактным напряжениям, — коэффициент нагрузки, учитывающий распределение нагрузки между зубьями (для прямозубых передач =1), — коэффициент нагрузки, учитывающий неравномерность распределения нагрузки по ширине зубчатого венца (по длине контактных линий), =1,25 — коэффициент нагрузки, учитывающий дополнительные динамические нагрузки.

Источник

Шпоночные и шлицевые соединения

Шпоночные соединения предназначены для соединения валов со ступицами различных деталей вращения (зубчатых колес, шкивов, эксцентриков, маховиков и т.п.); их используют для передачи крутящего момента от вала к ступице или наоборот. Широко распространенные ненапряженные соединения осуществляют призматическими и сегментными шпонками, а напряженные — клиновыми и тангенциальными (рис. 10).

Шестигранные и комбинированные шпонки применяют для соединения тел вращения по торцовым поверхностям. У призматических шпонок рабочими являются боковые, более узкие грани. Между верхней широкой гранью шпонки и дном паза ступицы предусмотрен зазор. Использование призматических шпонок дает возможность точно центрировать сопрягаемые элементы и получать как неподвижные, так и скользящие соединения. Простые призматические шпонки бывают трех исполнений: с закругленными торцами, с одним закругленным и одним плоским торцами и с плоскими торцами. Шпонка обрабатывается с припуском 0,1…0,15 мм с учетом последующей подгонки на краску по шпоночным канавкам вала и сопрягаемой детали.

Простые шпонки устанавливают в паз вала без крепления; направляющие шпонки дополнительно крепят к валу винтами для устранения перекоса при перемещении (рис. 10, в). Призматические шпонки, скользящие вместе со ступицами вдоль вала, применяют при больших осевых перемещениях. Их выполняют с цилиндрическими выступами-головками, которые входят в соответствующие отверстия в ступицах.

Рис. 9. Схемы гидропрессовой сборки при подводе масла через отверстие во втулке (а), в валу (б)

Рис. 10. Типы шпонок: а — клиновая; б — призматическая; в — направляющая; г — сегментная; д — тангенциальная

Различают свободные, нормальные и плотные шпоночные соединения с призматическими шпонками. На размер по ширине призматической шпонки устанавливают поле допуска h9. Поля допусков на ширину пазов валов установлены в зависимости от типа соединения: для свободных Н9; для нормальных N9; для плотных Р9; соответственно ширина паза во втулке D10, JS9 и Р9.

Свободное соединение имеет посадку с зазором, а нормальное и плотное — переходные посадки. Призматические шпонки по сравнению с клиновыми обеспечивают более высокую точность центрирования, а по сравнению с сегментными в меньшей степени ослабляют вал.

Сегментные шпонки (рис. 10, г) обладают некоторыми технологическими преимуществами перед призматическими. Положение сегментных шпонок на валу более устойчиво вследствие большей глубины врезания.

При необходимости по длине ступицы устанавливают две сегментные шпонки. Для сегментных шпонок и пазов под них приняты следующие поля допусков: h9 для ширины шпонки; N9 для ширины паза вала в нормальном соединении и Р9 в плотном; JS9 для ширины паза втулки в нормальном соединении и Р9 в плотном. Если детали термообработаны, применяют поля допусков Н11 для ширины паза вала и D10 для ширины паза втулки. Для упрощения и облегчения сборки соединений с сегментными шпонками, как и с призматическими, между шпонкой и дном паза ступицы вала предусмотрен зазор.

Клиновые и тангенциальные шпонки используют в тех случаях, когда требования к соосности соединяемых деталей не имеют существенного значения (шкивы, маховики и т.п.). Клиновые шпонки (рис. 10, а) изготовляют: с головками; с закругленными и прямыми торцами; с одним закругленным и одним прямым торцами. Верхняя поверхность клиновой шпонки имеет уклон 1:100. Натяг между валом и ступицей создают забиванием шпонки или затяжкой ступицы гайкой на шпонку, установленную на валу в шпоночном пазе. Клиновая шпонка должна плотно прилегать ко дну шпоночного паза вала и ступицы, а по боковым поверхностям иметь зазор. Клиновые шпонки создают напряженное соединение, способное передавать не только крутящий момент, но и осевую силу. Установка клиновой шпонки вызывает радиальное смещение оси ступицы. Уменьшения биения ступицы достигают сокращением посадочного зазора и обеспечением равенства уклонов шпонки и дна паза ступицы.

В соединениях с тангенциальными (рис. 10, д) клиновыми шпонками натяг между валом и ступицей создается не в радиальном, а в касательном направлении. Шпонки в таких соединениях работают на сжатие. Каждую шпонку составляют из двух односкосных клиньев, обращенных вершинами в разные стороны с параллельными наружными рабочими гранями. Соединения тангенциальными шпонками применяют в тяжелом машиностроении при больших динамических нагрузках для валов диаметром 60…100 мм. Поле допуска толщины шпонок принимают до h11, а угла

Читайте также:  Вид сравнения компоновки данных

наклона до . Тангенциальные клиновые шпонки устанавливают попарно при ударах молотка с медным или свинцовым наконечником либо с использованием специального приспособления.

В шпоночных соединениях контролируют:

  • отклонения формы и размеров шпонки, а также пазов вала и ступицы по всей длине;
  • отсутствие заусенцев и забоин на рабочих поверхностях шпонки и осей пазов;
  • отклонения от параллельности осей вала или отверстия ступицы;
  • отклонения от симметричности боковых поверхностей пазов вала и ступицы относительно диаметральной плоскости;
  • качество пригонки рабочих поверхностей шпонки и пазов;
  • наличие зазоров по высоте для призматических и сегментных шпонок и по ширине для клиновых шпонок.

Порядок сборки соединений с обыкновенной призматической шпонкой:

  • подготовка нужной шпонки (из чисто тянутого прутка);
  • пригонка шпонки по пазу вала (припиливание или шабрение по краске);
  • запрессовка шпонки в вал прессом, струбцинами или с ударами медного молотка;
  • проверка щупом отсутствия зазора между боковыми сторонами шпонки с минимальным зазором для неподвижных соединений и с гарантированным зазором для подвижных.

При сборке соединений с клиновой шпонкой:

  • готовят нужную шпонку;
  • шпонку и пазы вала и ступицы смазывают машинным маслом;
  • ступицу надевают на вал, пазы их совмещают;
  • шпонку вводят в паз и ударом по широкой торцовой части или головке заклинивают;
  • при этом головка шпонки не должна доходить до ступицы, что гарантирует наличие натяга в соединении;
  • при наличии зазора (проверяется щупом с обеих сторон ступицы), который образуется при несовпадении уклонов шпонки и ступицы, соединение разбирают и соприкасающиеся поверхности пригоняют.

Шлицевыми называют соединения цилиндрических деталей, образованные выступами — зубьями на валу, входящими во впадины соответствующей формы в ступице. Шлицевые соединения применяют в качестве неподвижных для постоянного соединения ступицы с валом, подвижных без нагрузки, например для переключения зубчатых колес, и подвижных под нагрузкой. По форме профиля зубьев различают три типа соединений: прямобочные, эвольвентные и треугольные.

Шлицевые соединения обладают по сравнению со шпоночными следующими преимуществами: большей несущей способностью; более хорошим центрированием деталей на валах и лучшим направлением при осевом перемещении.

Соединения с прямобочными зубьями составляют 80…90 % от всех шлицевых соединений; их выполняют с центрированием по боковым граням зубьев; по наружному и внутреннему диаметру вала.

Эвольвентные шлицевые соединения с углом профиля 30° по сравнению с прямобочными отличаются повышенной точностью благодаря большому числу зубьев, их утолщению и закреплению у основания, достаточно технологичны при изготовлении. Эвольвентные шлицевые соединения применяют для валов диаметром 12…400 мм.

Области использования шлицевых соединений определяются их типами и способами центрирования (табл. 7).

Сборку соединений начинают с осмотра шлицев собираемых деталей. На их поверхностях не должно быть забоин, заусенцев или задиров. Для предупреждения возможного заедания шлицев необходимо, чтобы были выполнены все наружные фаски на торцах деталей и закругления шлицев. Сопрягаемые поверхности должны быть смазаны. В соединениях, работающих в тяжелом режиме, прилегание шлицев проверяют по краске.

Таблица 7. Области применения шлицевых соединений

Форма профиля Способ центрирования Примерное назначение
Прямобочная

По наружному диаметру Для простых способов центрирования. Отверстия втулки без термообработки или с термическим улучшением
По внутреннему диаметру Для точного центрирования. Втулка и вал термообработаны
По боковым граням Для тяжелонагруженных соединений с равномерным распределением нагрузки при термически улучшенной поверхности втулки
Эвольвентная

По боковым граням Для тяжелонагруженных соединений без повышенных требований к центрированию, обеспечивает равномерное распределение нагрузки. Втулка и вал без термообработки
По наружному диаметру То же, с более высокими требованиями к центрированию
Треугольная

По боковым граням Для слабонагруженных соединений с тонкостенными втулками

В зависимости от применяемой посадки центрирующих поверхностей шлицев соединения подразделяются на три группы: тугоразъемные, легкоразъемные и подвижные.

В тугоразъемных соединениях охватывающую деталь напрессовывают специальным приспособлением. Собирать такие соединения с помощью молотка или кувалды не рекомендуется. Неравномерные удары вызывают перекос охватывающей детали на шлицах и даже задир. При сборке тугих шлицевых соединений диаметром свыше 50 мм целесообразно охватывающую деталь перед запрессовкой нагреть до 80…120 °С.

Зазоры в легкоразъемном шлицевом соединении являются причиной перекоса сопрягающих деталей, особенно при нагрузке, действующей несимметрично относительно средней плоскости охватывающей детали. Дополнительные осевые силы, вызванные колебательными движениями деталей шлицевого соединения, обусловливают усиленный износ последних. После установки и закрепления охватывающей детали на шлицах соединение проверяют на биение. Допускаемые радиальное и торцовое биения зависят от назначения соединения и указываются на сборочном чертеже или в технических требованиях на сборку.

В легкоразъемных и подвижных шлицевых соединениях охватывающие детали устанавливают под действием небольших сил. Осевое перемещение охватывающей детали в правильно собранной сборочной единице осуществляется легко, без заеданий, а тангенциальное — под действием крутящего момента, создаваемого вручную, допускается в узких пределах. В подвижных соединениях отверстия охватывающей детали и шлицевого вала должны быть соосны. При полной соосности все шлицы вала контактируют со шлицами отверстия; если такого контакта не будет, ухудшаются условия работы соединения.

Источник