Меню

Класс точности измерения времени



Классы точности средств измерений

Характеристики, введенные стандартами, наиболее полно опи­сывают метрологические свойства СИ. Однако в настоящее время в эксплуатации находится достаточно большое число СИ, метроло­гические характеристики которых нормированы несколько по­дру­гому, а именно, на основе классов точности.

Класс точности — это обобщенная характеристика СИ, выра­жаемая пределами допускаемых значений его основной и допол­нительной погрешностей, а также другими характеристиками, влияющими на точность.

Класс точности не является непосредственной оценкой точности измерений, выполняемых этим СИ, поскольку погрешность зависит еще от ряда факторов: метода измерений, условий измерений и т. д. Класс точности лишь позволяет судить о том, в каких пределах на­ходится погрешность СИ данного типа.

Предел допускаемой основной погрешности СИ, определяемый классом точности, — это интервал, в котором находится значение основной погрешности СИ. Если СИ имеет незначительную слу­чайную составляющую, то определение СИ относится к нахожде­нию систематической погрешности и случайной погрешности, обу­словленной гистерезисом, и является достаточно строгим. При этом предел СИ OSP 0,5HOP.

Если СИ имеет существенную случайную погрешность, то для него определение предела допускаемой основной погрешности является нечетким. Его следует понимать как интервал, в котором находится значение основной погрешности с неизвестной вероят­ностью, близкой к единице:

Классы точности СИ устанавливаются в стандартах или техни­ческих условиях. Средство измерений может иметь два и более класса точности. Например, при наличии у него двух или более диапазонов измерений одной и той же физической величины ему можно присваивать два или более класса точности. Приборы, пред­назначенные для измерения нескольких физических величин, также могут иметь различные классы точности для каждой изме­ряемой величины.

Пределы допускаемых основной и дополнительной погрешностей выражают в форме приведенных, относительных или абсолютных погрешностей. Выбор формы представления зависит от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения СИ. Пределы допускаемой абсолютной погрешности устанавливают­ся по одной из формул:

Первая формула описывает чисто аддитивную погрешность (рис.7.1 , а), а вторая — сумму аддитивной и мультипликативной погреш­ностей (рис. 7.2, в). В технической документации классы точности, установленные в виде абсолютных погрешностей, обозначают, на­пример, «Класс точности М», а на приборе — буквой «M». Для обозначения используются прописные буквы латинского алфавита или римские цифры, причем меньшие пределы погрешностей долж­ны соответствовать буквам, находящимся ближе к началу алфавита, или меньшим цифрам.

Пределы допускаемой приведенной основной погрешности определяются по формуле

Равным наиболь­шему из всех имеющихся пределов измерений для СИ с равномер­ной, практически равномерной или степенной шкалами, а также для тех измерительных преобразователей, у которых нулевое зна­чение выходного сигнала находится на краю или вне диапазона измерений.

Для СИ, шкала которых имеет условный нуль, xN равно модулю разности пределов измерений. Например, для вольтметра термо­электрического термометра с пределами измерений от 100 до 600 °С нормирующее значение равно 500 °С. Для СИ с заданным номи­нальным значением xN принимают равным всей длине шкалы или ее части, соответствующей диапазону измерений.

В этом случае пределы абсолютной погрешности выражают, как и длину шкалы, в единицах длины, а на СИ класс точности условно обозначают, например, в виде значка \0,5/, где 0,5 — значение числа р. В осталь­ных рассмотренных случаях класс точности обозначают конкретным числом р, например 1,5. Обозначение наносится на циферблат при­бора.

Источник

Класс точности измерения времени

Государственная система обеспечения единства измерений

КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ

State system for ensuring the uniformity of measurements. Accuracy classes of measuring instruments. General requirements

Дата введения 1981-07-01

Постановлением Государственного комитета СССР по стандартам от 12 ноября 1980 г. N 5320 дата введения установлена 01.07.81

ВЗАМЕН ГОСТ 13600-68

ПЕРЕИЗДАНИЕ. Октябрь 2010 г.

Настоящий стандарт устанавливает общие положения деления средств измерений на классы точности, способы нормирования метрологических характеристик, комплекс требований к которым зависит от класса точности средств измерений, и обозначения классов точности.

Стандарт не устанавливает классы точности средств измерений, для которых в стандартах предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также нормирование номинальных функций влияния, если средства измерений предназначены для применения без введения поправок с целью исключения дополнительных погрешностей с учетом номинальных функций влияния. Стандарт не устанавливает также классы точности средств измерений, при применении которых в соответствии с их назначением необходимо для оценки погрешности измерений учитывать динамические характеристики.

Пояснение терминов, используемых в настоящем стандарте, приведено в приложении 4.

Стандарт полностью соответствует международной рекомендации МОЗМ N 34*.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

1. Общие положения

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Классы точности следует устанавливать в стандартах или технических условиях, содержащих технические требования к средствам измерений, подразделяемым по точности. Необходимость подразделения средств измерений по точности определяют при разработке этой документации.

1.1.1. Классы точности средств измерений конкретного вида следует устанавливать в стандартах общих технических требований (технических требований) или общих технических условий (технических условий).

1.1.2. Классы точности средств измерений конкретного типа следует выбирать из ряда классов точности для средств измерений конкретного вида, регламентированного в стандартах, и устанавливать в стандартах технических требований (условий) или в технической документации, утвержденной в установленном порядке.

1.1.3. В стандартах или технических условиях, устанавливающих класс точности средств измерений конкретного типа, следует давать ссылку на стандарт, которым установлен ряд классов точности на средства измерений данного вида.

1.2. Для каждого класса точности в стандартах на средства измерений конкретного вида устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающие уровень точности средств измерений этого класса. Для малоизменяющихся метрологических характеристик допускается устанавливать требования, единые для двух и более классов точности.

Независимо от классов точности нормируют метрологические характеристики, требования к которым целесообразно устанавливать едиными для средств измерений всех классов точности, например входные или выходные сопротивления.

Совокупности нормируемых метрологических характеристик должны быть составлены из характеристик, предусмотренных ГОСТ 8.009-84. Допускается включать дополнительные характеристики.

Читайте также:  Что значит метрическая единица измерения

Примеры составления совокупности нормируемых метрологических характеристик, требования к которым устанавливают в зависимости от классов точности средств измерений, приведены в приложении 1.

1.3. Средствам измерений с двумя или более диапазонами измерений одной и той же физической величины допускается присваивать два или более класса точности (см. приложение 2, п.1).

1.4. Средствам измерений, предназначенным для измерений двух или более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины (см. приложение 2, п.2).

1.5. С целью ограничения номенклатуры средств измерений по точности для средств измерений конкретного вида следует устанавливать ограниченное число классов точности, определяемое технико-экономическими обоснованиями.

1.6. Средства измерений должны удовлетворять требованиям к метрологическим характеристикам, установленным для присвоенного им класса точности, как при выпуске их из производства, так и в процессе эксплуатации.

1.7. Классы точности цифровых измерительных приборов со встроенными вычислительными устройствами для дополнительной обработки результатов измерений следует устанавливать без учета режима обработки.

1.8. Классы точности следует присваивать средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Если в стандарте или технических условиях, регламентирующих технические требования к средствам измерений конкретного типа, установлено несколько классов точности, то допускается присваивать класс точности при выпуске из производства, а также понижать класс точности по результатам поверки в порядке, предусмотренном документацией, регламентирующей поверку средств измерений. При этом класс точности набора мер определяется классом точности меры с наибольшей погрешностью (см. приложение 2, п.3).

2. Способы нормирования и формы выражения метрологических характеристик

2.1. Требования следует устанавливать к каждой нормируемой характеристике отдельно.

2.2. Пределы допускаемых основной и дополнительных погрешностей следует выражать в форме приведенных, относительных или абсолютных погрешностей в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений конкретного вида (см. приложение 3). Пределы допускаемой дополнительной погрешности допускается выражать в форме, отличной от формы выражения пределов допускаемой основной погрешности.

Примечание. Выражение пределов допускаемой погрешности в форме приведенных и относительных погрешностей является предпочтительным, так как они позволяют выражать пределы допускаемой погрешности числом, которое остается одним и тем же (числами, которые остаются одними и теми же) для средств измерений одного уровня точности, но с различными верхними пределами измерений.

2.3. Пределы допускаемой основной погрешности устанавливают в последовательности, приведенной ниже.

2.3.1. Пределы допускаемой абсолютной основной погрешности устанавливают по формуле

где — пределы допускаемой абсолютной основной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы;

— значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале;

, — положительные числа, не зависящие от .

В обоснованных случаях пределы допускаемой абсолютной погрешности устанавливают по более сложной формуле или в виде графика либо таблицы.

Примечание. При применении формулы (1) или (2) для средств измерений, используемых с отсчитыванием интервалов между произвольно выбираемыми отметками шкалы, допускается указывать, что погрешность каждого отдельного средства измерений не должна превышать установленной нормы, оставаясь только положительной или только отрицательной.

2.3.2. Пределы допускаемой приведенной основной погрешности следует устанавливать по формуле

где — пределы допускаемой приведенной основной погрешности, %;

— пределы допускаемой абсолютной основной погрешности, устанавливаемые по формуле (1);

— нормирующее значение, выраженное в тех же единицах, что и ;

— отвлеченное положительное число, выбираемое из ряда 1·10 ; 1,5·10 ; (1,6·10 ); 2·10 ; 2,5·10 ; (3·10 ); 4·10 ; 5·10 ; 6·10 ( =1, 0, -1, -2 и т. д.).

Значения, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

При одном и том же показателе степени допускается устанавливать не более пяти различных пределов допускаемой основной погрешности для средств измерений конкретного вида.

2.3.3. Нормирующее значение для средств измерений с равномерной, практически равномерной или степенной шкалой (см. приложение 4), а также для измерительных преобразователей, если нулевое значение входного (выходного) сигнала находится на краю или вне диапазона измерений, следует устанавливать равным большему из пределов измерений или равным большему из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений.

Для электроизмерительных приборов с равномерной, практически равномерной или степенной шкалой и нулевой отметкой внутри диапазона измерений нормирующее значение допускается устанавливать равным сумме модулей пределов измерений.

2.3.4. Для средств измерений физической величины, для которых принята шкала с условным нулем, нормирующее значение устанавливают равным модулю разности пределов измерений (см. приложение 2, п.4).

2.3.5. Для средств измерений с установленным номинальным значением нормирующее значение устанавливают равным этому номинальному значению (см. приложение 2, п.5).

2.3.6. Для измерительных приборов с существенно неравномерной шкалой нормирующее значение устанавливают равным всей длине шкалы или ее части, соответствующей диапазону измерений. В этом случае пределы абсолютной погрешности выражают, как и длину шкалы, в единицах длины.

2.3.7. В случаях, не предусмотренных в пп.2.3.3-2.3.6, указания по выбору нормирующего значения должны быть приведены в стандартах на средства измерений конкретного вида.

2.3.8. Пределы допускаемой относительной основной погрешности устанавливают по формуле

если установлено по формуле (1),

или по формуле

где — пределы допускаемой относительной основной погрешности, %;

, — см. п.2.3.1;

— отвлеченное положительное число, выбираемое из ряда, приведенного в п.2.3.2;

— больший (по модулю) из пределов измерений;

, — положительные числа, выбираемые из ряда, приведенного в п.2.3.2.

2.4. Пределы допускаемых дополнительных погрешностей устанавливают:

в виде постоянного значения для всей рабочей области влияющей величины или в виде постоянных значений по интервалам рабочей области влияющей величины;

путем указания отношения предела допускаемой дополнительной погрешности, соответствующего регламентированному интервалу влияющей величины, к этому интервалу;

путем указания зависимости предела допускаемой дополнительной погрешности от влияющей величины (предельной функции влияния);

путем указания функциональной зависимости пределов допускаемых отклонений от номинальной функции влияния.

Пределы допускаемой дополнительной погрешности, как правило, устанавливают в виде дольного (кратного) значения предела допускаемой основной погрешности.

Читайте также:  Калибровочная проволока для измерения зазоров

2.5. Для различных условий эксплуатации средств измерений в рамках одного и того же класса точности допускается устанавливать различные рабочие области влияющих величин.

2.6. Предел допускаемой вариации выходного сигнала следует устанавливать в виде дольного (кратного) значения предела допускаемой основной погрешности или в делениях шкалы. Пределы допускаемой нестабильности, как правило, устанавливают в виде доли предела допускаемой основной погрешности.

2.7. Способы выражения метрологических характеристик, не указанных в пп.2.3-2.6, должны быть приведены в стандартах, устанавливающих классы точности средств измерений конкретного вида.

2.8. Пределы допускаемых погрешностей должны быть выражены не более чем двумя значащими цифрами, причем погрешность округления при вычислении пределов должна быть не более 5%.

3. Обозначение классов точности

3.1. Обозначение классов точности средств измерений в документации

3.1.1. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей (п.2.3.1) или относительных погрешностей, причем последние установлены в виде графика, таблицы или формулы, не приведенной в п.2.3.8, классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами.

В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

3.1.2. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме приведенной погрешности или относительной погрешности в соответствии с формулой (4), классы точности в документации следует обозначать числами, которые равны этим пределам, выраженным в процентах.

Примечание. Обозначение класса точности в соответствии с этим пунктом дает непосредственное указание на предел допускаемой основной погрешности.

3.1.4. Для средств измерений, определяющей характеристикой классов точности которых является нестабильность, обозначения классов точности в документации следует устанавливать по аналогии с пп.3.1.1 и 3.1.2 (см. приложение 2, п.6).

3.1.5. В документации на средства измерений допускается обозначать классы точности в соответствии с п.3.2.

3.1.6. В эксплуатационной документации на средство измерений конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности этого средства измерений.

3.2. Обозначение классов точности на средствах измерений

3.2.1. На циферблаты, щитки и корпуса средств измерений должны быть нанесены условные обозначения классов точности, включающие числа, прописные буквы латинского алфавита или римские цифры, установленные в пп.3.1.1-3.1.3 с добавлением знаков, указанных в таблице.

3.2.3. Обозначение класса точности допускается не наносить на высокоточные меры, а также на средства измерений, для которых действующими стандартами установлены особые внешние признаки, зависящие от класса точности, например параллелепипедная и шестигранная форма гирь общего назначения.

3.2.4. За исключением технически обоснованных случаев вместе с условным обозначением класса точности на циферблат, щиток или корпус средств измерений должно быть нанесено обозначение стандарта или технических условий, устанавливающих технические требования к этим средствам измерений.

3.2.5. На средства измерений, для одного и того же класса точности которых в зависимости от условий эксплуатации установлены различные рабочие области влияющих величин, следует наносить обозначения условий их эксплуатации, предусмотренные в стандартах или технических условиях на эти средства измерений.

3.2.6. Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице.

Пределы допускаемой основной погрешности

Пределы допускаемой основной погрешности, %

Источник

Класс точности

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Читайте также:  Схема измерения мощности трансформатора

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

Источник