Меню

Классификации средства измерений виду выходной величины



Средства измерений

Средство измерений

  • техническое средство, предназначенное для измерений (определение по 102-ФЗ от 26.06.2008г.);
  • техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени (определение по РМГ 29-99).

Классификация средств измерений

По техническому назначению:

  • мера физической величины – cредство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью;
  • измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне;
  • измерительный преобразователь – техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи;
  • измерительная установка (измерительная машина) – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте;
  • измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;
  • измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По степени автоматизации:

  • автоматические;
  • автоматизированные;
  • ручные.

По стандартизации средств измерений:

По положению в поверочной схеме:

  • эталоны;
  • рабочие средства измерений.

По значимости измеряемой физической величины:

  • основные средства измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;
  • вспомогательные средства измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Источник

Виды средств измерений в метрологии

Средствами измерений (СИ) называются технические средства, применяемые для измерения единицы физической величины (ФВ) на практике. Для СИ установлены нормированные погрешности.

Средства измерений классифицируются по следующим критериям:

  • вид;
  • принцип действия;
  • метрологическое назначение.

К основным видам средств измерений относятся следующие:

  • эталон;
  • мера;
  • измерительный преобразователь;
  • измерительный прибор;
  • измерительная установка;
  • измерительная система.

Мера, эталон

Мерой является средство измерений, которое предназначено для воспроизведения заданного размера физической величины. К примеру, гиря является мерой массы, резистор – мерой электрического сопротивления.

Различают одно- и многозначные меры, а кроме того, наборы и магазины мер.

С помощью однозначной меры воспроизводится величина лишь одного размера. Примером такой меры является гиря. Многозначными мерами воспроизводятся несколько размеров ФВ. Примером многозначной меры может служить миллиметровая линейка, с помощью которой можно выразить длину предмета как в миллиметрах, так и в сантиметрах.

Меры с наивысшим порядком точности называются эталонами, подробнее о которых вы можете прочитать в материале «Средства измерения в метрологии».

Измерительный преобразователь

Под измерительным преобразователем подразумевается СИ, которое преобразует сигнал измерительной информации в форму, удобную для его передачи, последующего преобразования, а затем обработки и хранения, но при этом сигнал в таком виде не предназначен для непосредственного восприятия наблюдателем.

Этот сигнал подается в показывающее устройство, с которого и происходит это непосредственное восприятие. По данной причине преобразователь либо входит в конструкцию измерительного прибора, либо совместно с ним применяется.

К примеру, использоваться преобразователь может с целью передачи данных в память компьютера. Преобразуемая величина носит название входной, а итог преобразования называется выходной величиной. Основная метрологическая характеристика преобразователя и определяется соотношением этих величин (входной и выходной), которое носит название «функция преобразования».

Измерительный прибор. Классификация измерительных приборов

Измерительным прибором называется СИ, которое, в отличие от преобразователя, служит для выработки сигнала в форме, которая доступна для непосредственного восприятия наблюдателем.

Существуют различные классификации измерительных приборов, это:

  • назначение;
  • конструктивное устройство;
  • степень автоматизации.

Назначение измерительных приборов

По данному признаку различают измерительные приборы (ИП):

  • универсальные, применяемые в контрольно-измерительных лабораториях всех типов производств, а кроме того в цехах мелкосерийных и единичных производств;
  • специальные, применяемые для измерения одного или нескольких параметров деталей определенного типа;
  • для контроля: приемочного (калибры), активного (при изготовлении деталей) или статистического.

По этому признаку различают приборы:

  • механические: штангенциркуль, микрометр, щупы, рычажные скобы и т.д.;
  • оптические: микроскоп, проектор, оптиметр и др.;
  • пневматические: длинномеры, или ротаметры, и т.д.;
  • электрические: индуктивные приборы, кругломеры, профилографы и др.

Степень автоматизации

По данному признаку приборы бывают:

  • ручного действия;
  • механизированными;
  • полуавтоматическими;
  • автоматическими.

Измерительная установка

Измерительная установка – это совокупность СИ (меры, измерительные приборы и преобразователи) и вспомогательных устройств, объединенных функционально. Предназначение составляющих измерительной установки – выработка сигналов в удобной для непосредственного восприятия наблюдателем форме. Сама измерительная установка располагается на одном месте (испытательный стенд).

Измерительная система

Измерительная система представляет собой такую же совокупность, но составляющие ее звенья соединены между собой каналами связи, которые размещены в разных точках контролируемого пространства. Цель измерительной системы – измерить одну или несколько ФВ, которые свойственны данному пространству.

Источник

Классификация измерительных приборов

Измерительным прибором называется устройство, с помощью которого измеряемая величина сравнивается с единицей измере­ния. Измерительный прибор предназначен для выработки сигнала измерительной информации в форме, доступной для непосредствен­ного восприятия наблюдателем.

Измерительные приборы делятся на образцовые и рабочие.

Образцовыми называются приборы, предназначенные для хранения и воспроизводства единиц измерения, а также для проверки и градуировки приборов.

Рабочими называются приборы, исполь­зуемые для практических измерений. В свою очередь, рабочие измерительные приборы делятся на лабораторные и технические. Лабораторные приборы в промышленности не применяют и в связи с этим далее они не рассматриваются. Для автоматического контроля и регулирования в промышленности используют технические рабочие приборы.

Классификация контрольно-измерительных приборов по назначению

По назначению технические рабочие приборы делятся на показывающие, самопишущие, сигнализирующие, регулирующие и измерительные автоматы.

Показывающие — приборы, по которым только отсчитывают измеряемую величину в данный момент времени.

Читайте также:  Как измерить 250 г масла

Самопишущие (регистрирующие) приборы снабжены уст­ройством для автоматической регистрации (записи) значения измеряемой величины за все время работы прибора. Они дают возможность получить данные для последующего анализа работы объекта или хода технологического процесса путем обработки картограммы прибора. Самопищущие приборы могут иметь также показывающее устройство, в этом случае они одновременно явля­ются показывающими и самопишущими.

Сигнализирующие приборы имеют специальные приспособления для включения световой или звуковой сигнализации при достижении измеряемой величиной заранее заданного значения.

Регулирующие приборы имеют специальное устройство, предназначенное для автоматического поддержания измеряемой величины на заданном значении или для изменения ее по заданному закону. Такие приборы могут иметь показывающее или реги­стрирующее устройство или одновременно и то и другое.

Измерительные автоматы — это приборы с устройством, выполняющим по результатам измерения определенную работу, согласно установленной для них программе. Их применяют при взвешивании и дозировке жидких и сыпучих веществ, управлении работой технологического оборудования, сортировке продукции и других операциях.

Классификация приборов по характеру передачи показаний

По характеру передачи показаний приборы делятся на местные и с дистанционной передачей. Местные приборы по своей кон­струкции могут быть использованы только непосредственно у места измерения.

У приборов с дистанционной передачей исполнительная часть находится на значительном расстоянии от места изме­рения. Приборы с дистанционной передачей комплектуют в измерительные установки, которые состоят из следующих основных, частей:

  • первичного прибора — преобразователя (датчика), восприни­мающего посредством чувствительного элемента (первичного пре­образователя) изменения измеряемой величины, преобразующего ее в выходной сигнал — импульс и передающего последний на расстояние;
  • вторичного прибора, который воспринимает посредством измери­тельного устройства импульсы, передаваемые преобразователем, и преобразует их в перемещения указателя относительно шкалы; вторичные приборы могут быть показывающими, самопи­шущими, сигнализирующими, регулирующими приборами или изме­рительными автоматами;
  • соединительных трубных (пневматических, гидравлических) или электрических проводок, по которым передаются результаты измерений от преобразователя к вторичному прибору.

Классификация измерительных приборов по виду показаний

По виду показаний измерительные приборы делятся на анало­говые (непрерывные) и цифровые (дискретные). В аналоговом измерительном приборе показания являются непрерывной функ­цией изменений измеряемой величины. В цифровом измерительном . приборе автоматически вырабатываются дискретные (прерыви­стые) сигналы измерительной информации, а показания представ­лены в цифровой форме.

Классификация приборов по виду измеряемой величины

По виду измеряемой величины приборы выпускают для изме­рения температуры, давления, расхода и количества, концентра­ции растворов, уровня, влажности и плотности газов, электриче­ских величин и определения состава (анализа) газов и жидкостей.

С какой бы тщательностью ни было сделано измерение, оно сопровождается погрешностями, в той или иной степени искажаю­щими результат измерения. Погрешностью называется разность между показанием прибора и действительным значением изме­няемой величины. Погрешности приборов не должны выходить, за пределы, установленные стандартами, нормалями и техниче­скими условиями для данного метода измерения.

Классификация контрольно–измерительных приборов по точности измерения

По точности измерения приборы разделяются по классам, обозначаемым цифрами: 0,1; 0,15; 0,2; 0,25; 0,4; 0,5; 0,6; 1,0; 1,5; 2,0; 2,5; 4,0. Обычно цифры, соответствующие классу точности прибора, наносят на шкалу и заключают в окружность. Класс точности выражается числом погрешности, соответствующей нормальным условиям работы прибора, т. е. нормальному положению прибора, нормальной температуре окружающей среды и др. Например, для прибора класса 1,5 со шкалой 0—1000° С допустимая погрешность будет равна ±15° С, для прибора того же класса, но со шкалой 0—500° С допустимая погрешность будет ±7,5° С, а для прибора того же класса с двусторонней шкалой от —50 до +100° С — ±2,25° С. Иначе говоря, допустимая погрешность вычисляется от алгебраической разности верхнего и нижнего пределов измерения.

Допустимая погрешность — наибольшая погрешность показа­ния прибора, допускаемая нормами. Она характеризуется постав­ленными перед ней знаками плюс и минус или одним из этих знаков, если распространяется только на одни положительные или отрицательные значения допустимых нормами погрешностей.

В настоящее время на промышленных предприятиях применяют в основном приборы классов точности 0,4; 0,5; 0,6; 1; 1,5. Прибо­рами класса 0,1; 0,15; 0,2 и 0,25 пользуются пока еще мало, а приборы классов 2,0; 2,5 и 4 применяют все реже, потому что их низкая точность не удовлетворяет возросшим требованиям про­мышленных технологических процессов.

Каминский М.Л. Монтаж приборов контроля и аппаратуры автоматического регулирования. Учебник для средних проф.-тех. училищ. «Высшая школа», 1978 г.

Источник

Классификация средств измерений

По техническому назначению:

Мера физической величины— средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью;

Различают следующие разновидности мер:

— однозначная мера — мера, воспроизводящая физическую величину одного размера (например, гиря 1 кг, конденсатор постоянной емкости);

— многозначная мера — мера, воспроизводящая физическую величину разных размеров (например, штриховая мера длины, конденсатор переменной емкости);

— набор мер — комплект мер разного размера одной и той же физической величины, предназначенных для применения на практике, как в отдельности, так и в различных сочетаниях (например, набор концевых мер длины);

— магазин мер — набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений

Измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительный прибор, как правило, содержит устройство для преобразования измеряемой величины в сигнал измерительной информации и его индексации в форме, наиболее доступной для восприятия. Во многих случаях устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифровое табло, благодаря которым может быть произведен отсчет или регистрация значений физической величины.

В зависимости от вида выходной величины различают аналоговые и цифровые измерительные приборы.

— аналоговый измерительный прибор – это измерительный прибор, показания (или выходной сигнал) которого являются непрерывной функцией измеряемой величины (например, стрелочный вольтметр, стеклянный ртутный термометр).

— цифровой измерительный прибор – это измерительный прибор, показания которого представлены в цифровой форме.

Читайте также:  Методика измерения уровня звука соуэ

В цифровом приборе происходит преобразование входного аналогового сигнала измерительной информации в цифровой код, и результат измерения отражается на цифровом табло.

По форме представления выходной величины (по способу индикации значений измеряемой величины) измерительные приборы разделяют на показывающие и регистрирующие измерительные приборы.

— показывающий измерительный прибор – измерительный прибор, допускающий только отсчитывание показаний значений измеряемой величины (микрометр, аналоговый или цифровой вольтметр).

— регистрирующий измерительный прибор – измерительный прибор, в котором предусмотрена регистрация показаний. Регистрация значений измеряемой величины может осуществляться в аналоговой или цифровой форме, в виде диаграммы, путем печатания на бумажной или магнитной ленте (термограф или, например, измерительный прибор, сопряженный с компьютером, дисплеем и устройством для печатания показаний).

Измерительный преобразователь— техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Полученные в результате преобразования величина или измерительный сигнал, не доступны для непосредственного восприятия наблюдателем, они определяются через коэффициент преобразования.

Измерительный преобразователь или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы), или же применяется вместе с каким-либо средством измерений.

Измерительная установка (измерительная машина) — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте;

Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях;

Измерительно-вычислительный комплекс— функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По метрологическому назначению все СИ подразделяются на эталоны, рабочие эталоны и рабочие СИ.

Эталон единицы физической величины (эталон): Средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

Рабочий эталон: Эталон, предназначенный для передачи размера единицы рабочим средствам измерений.

Рабочее средство измерений: Средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений.

По значимости измеряемой физической величинывсе СИ подразделяются на основные и вспомогательные средства измерений.

Основные средства измерений той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;

Вспомогательные средства измерений той физической величины, влияние которой на основное средство измерений или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Классификация СИ по техническому назначениюявляется основной и представлена на рисунке 1.1.

Метрологическая характеристика средства измерений (метрологическая характеристика; MX): Характеристика одного из свойств средства измерений, влияющая на результат измерений и на его погрешность.

Для каждого типа средств измерений устанавливают свои метрологические характеристики. Метрологические характеристики, устанавливаемые нормативно-техническими документами, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально — действительными метрологическими характеристиками.

Номенклатура метрологических характеристик и способы их нормирования установлены ГОСТ 8.009 [2].

Все метрологические характеристики СИ можно разделить на две группы:

— характеристики, влияющие на результат измерений (определяющие область применения СИ);

— характеристики, влияющие на точность (качество) измерения.

К основным метрологическим характеристикам, влияющим на результат измерений, относятся:

— диапазон измерений измерительных приборов;

— значение однозначной или многозначной меры;

— функция преобразования измерительного преобразователя;

— цена деления шкалы измерительного прибора или многозначной меры;

— вид выходного кода, число разрядов кода, цена единицы наименьшего разряда кода средств измерений, предназначенных для выдачи результатов в цифровом коде.

Диапазон измерений средства измерений (диапазон измерений): Область значений величины, в пределах которой нормированы допускаемые пределы погрешности средства измерений (для преобразователей – это диапазон преобразования).

Значения величины, ограничивающие диапазон измерений снизу и сверху (слева и справа), называют соответственно нижним пределом измерений или верхним пределом измерений. Для мер – пределы воспроизведения величин.

Однозначные меры имеют номинальное и действительное значение воспроизводимой величины.

Номинальное значение меры: Значение величины, приписанное мере или партии мер при изготовлении.

Пример — Резисторы с номинальным значением 1 Ом, гиря с номинальным значением 1 кг. Нередко номинальное значение указывают на мере.

Действительное значение меры:Значение величины, приписанное мере на основании ее калибровки или поверки.

Пример — В состав государственного эталона единицы массы входит платиноиридиевая гиря с номинальным значением массы 1 кг, тогда как действительное значение ее массы составляет 1,000000087 кг, полученное в результате сличений с международным эталоном килограмма, хранящимся в Международном Бюро Мер и Весов (МБМВ) (в данном случае это калибровка).

Диапазон показаний средства измерений (диапазон показаний): Область значений шкалы прибора, ограниченная начальным и конечным значениями шкалы.

Цена деления шкалы (цена деления): Разность значения величины, соответствующих двум соседним отметкам шкалы средства измерений.

К метрологическим характеристикам, определяющим точность измерения, относится погрешность средства измерений и класс точности СИ.

Погрешность средства измерений: Разность между показанием средства измерений ( ) и истинным (действительным) значением ( ) измеряемой физической величины.

(1.1)

В качестве выступает либо номинальное значение (например, меры), либо значение величины, измеренной более точным (не менее чем на порядок, т.е. в 10 раз) СИ.

Считается, что чем меньше погрешность, тем точнее средство измерений.

Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

— по отношению к условиям измерения – основные, дополнительные;

— по способу выражения (по способу нормирования МХ) – абсолютные, относительные, приведенные.

Основная погрешность средства измерений (основная погрешность): Погрешность средства измерений, применяемого в нормальных условиях.

Как правило, нормальными условиями эксплуатации являются:

— температура (293 5) К или (20 5) 0 С;

— относительная влажность воздуха (65 15) % при 20 0 С;

— напряжение в сети 220 В 10 % с частотой 50 Гц 1 %;

Читайте также:  Электронный термометр для измерения тем

— атмосферное давление от 97,4 до 104 кПа.

Дополнительная погрешность средства измерений (дополнительная погрешность): Составляющая погрешности средства измерения, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

При нормировании характеристик погрешностей средств измерений устанавливают пределы допускаемых погрешностей (положительный и отрицательный).

Пределы допускаемых основной и дополнительной погрешностей выражаются в форме абсолютных, приведенных или относительных погрешностей в зависимости от характера изменения погрешностей в пределах диапазона измерений. Пределы допускаемой дополнительной погрешности можно выражать в форме, отличной от формы выражения пределов допускаемой основной погрешности.

Абсолютная погрешность средства измерений (абсолютная погрешность): Погрешность средства измерений , выраженная в единицах измеряемой физической величины.

Абсолютная погрешность определяется по формуле (1.1).

Пределы допускаемой основной абсолютной погрешности могут быть заданы в виде:

(1.2)

, (1.3)

где — пределы допускаемой абсолютной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы;

— значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале;

— положительные числа, не зависящие от .

Приведенная погрешность средства измерения (приведенная погрешность): Относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины (нормирующему значению), постоянному во всем диапазоне измерений или в части диапазона.

Приведенная погрешность средства измерений определяется по формуле:

%,(1.4)

где — пределы допускаемой приведенной основной погрешности, %;

— пределы допускаемой абсолютной основной погрешности, устанавливаемые по формуле (1.2);

— нормирующее значение, выраженное в тех же единицах, что и;

Пределы допускаемой приведенной основной погрешности следует устанавливать в виде:

, (1.5)

где — отвлеченное положительное число, выбираемое из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n ); 2·10 n ; 2,5·10 n ; (3·10 n ); 4·10 n ; 5·10 n ; 6·10 n (n=1, 0, -1, -2 и т.д.).

Нормирующее значение принимается равным:

— конечному значению рабочей части шкалы ( ), если нулевая отметка находится на краю или вне рабочей части шкалы (равномерной или степенной);

— сумме конечных значений шкалы (без учета знака), если нулевая отметка – внутри шкалы;

— модулю разности пределов измерений для СИ, шкала которых имеет условный нуль;

— длине шкалы или ее части, соответствующей диапазону измерений, если она существенно неравномерна. В этом случае абсолютную погрешность, как и длину шкалы, надо выражать в миллиметрах.

Относительная погрешность средства измерений (относительная погрешность): Погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины.

Относительная погрешность средства измерений вычисляется по формуле:

%, (1.6)

где — пределы допускаемой относительной основной погрешности, %;

— пределы допускаемой абсолютной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы;

— значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале.

Пределы допускаемой относительной основной погрешности устанавливают:

если , то в виде:

, (1.7)

где — отвлеченное положительное число, выбираемое из ряда, приведенного выше;

или, если , то в виде:

(1.8)

где — больший (по модулю) из пределов измерений;

— положительные числа, выбираемые из ряда, приведенного выше,

,

где — положительные числа, не зависящие от (см. формулу 1.3).

В обоснованных случаях пределы допускаемой относительной основной погрешности определяют по более сложным формулам либо в виде графика или таблицы.

Характеристики, введенные ГОСТ 8.009, наиболее полно описывают метрологические свойства СИ. Однако в настоящее время в эксплуатации находится достаточно большое количество СИ, метрологические характеристики которых нормированы несколько по-другому, а именно на основе классов точности.

Класс точности средств измерений (класс точности): Обобщенная характеристика данного типа средств измерения, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительной погрешностей, а также другими характеристиками, влияющими на точность.

Класс точности дает возможность судить о том, в каких пределах находится погрешность измерений этого класса. Это важно при выборе средств измерений в зависимости от заданной точности измерении. Обозначение классов точности СИ присваивают в соответствии с ГОСТ 8.401 [3].

Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице 1.1.

Обозначение класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в нормативной документации на СИ.

Номенклатура нормируемых метрологических характеристик СИ определяется назначением, условиями эксплуатации и многими другими факторами. Нормы на основные метрологические характеристики приводятся в стандартах, в технических условиях (ТУ) и эксплуатационной документации на СИ.

Примеры обозначения классов точности

Формула для определения пределов допускаемой основной погрешности Пределы допускаемой основной погрешности Обозначение класса точности Примечания
в документации на средстве измерений
Абсолютная: При измерении постоянного тока А Класс точности М М D — пределы допускаемой основной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы; х – значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале; и – положитель- ные числа, не зависящие от х.
Абсолютная: При измерении линейно изменяющегося напряжения мВ Класс точности С С
Приведенная , % % Класс точности 1,5 Класс точности 0,5 1,5 если нормирующее значение CN выражено в единицах величины на входе (выходе) средств измерений; если нормирующее значение определяется длиной шкалы или ее части
Относительная % Класс точности 0,5 0,5
Относительная Класс точности 0,02/0,01 0,02/0,01 – больший по модулю из пределов измерений

1.2 Цель работы:

— ознакомление с технической документацией на СИ и определение по ней основных классификационных признаков и нормируемых метрологических характеристик применяемых средств измерений;

— приобретение навыков определения основных классификационных признаков, применяемых средств измерений и их нормируемых метрологических характеристик непосредственно по средствам измерений;

— закрепление теоретических знаний по разделу «Классификация средств измерений» изучаемой дисциплины «Метрология, стандартизация и сертификация».

1.3Используемое оборудование и приборы:

2 вольтметр цифровой;

3 вольтметр аналоговый;

6 источник питания;

7 элемент нормальный термостатированный;

8 источник калиброванных напряжений программируемый.

Источник