Меню

Лабораторная работа измерение длины световой волны с помощью дифракционной решетки готовая



ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Информация в чистом виде ‒ это не знание. Настоящий источник знания ‒ это опыт.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 53. Лабораторная работа 13. Определение длины волны светового излучения с помощью дифракционной решётки

Тема: Определение длины волны светового излучения с помощью дифракционной решётки

Цель: Познакомиться на опыте с явлением многолучевой интерференции световых волн. Используя решётку с известным расстоянием между штрихами измерить длину волны светового излучения.

Оборудование:

  1. Штатив.
  2. Дифракционная решётка 100 штрихов на мм.
  3. Измерительная лента.

Теория

Дифракция волн — огибание волнами различных препятствий (неоднородностей).

Препятствия нарушают прямолинейность распространения фронта волны.

Дифракция волн свойственна всякому волновому движению; проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней, однако проявляется всегда. Для увеличения яркости дифракционной картины нужно пропускать свет через несколько параллельных щелей. В этом случае кроме явления дифракции будет происходить ещё и явление интерференции, т.к. лучи, идущие от всех лучей, оказываются когерентными.

Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Большое число параллельных и очень близко расположенных узких щелей, которые пропускают или отражают свет, называют дифракционной решёткой.

Дифракционные решетки с различным числом щелей на 1 мм:

Параллельный пучок света с длиной волны λ, проходя через дифракционную решётку, вследствие дифракции за решёткой, распространяется по всевозможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину:

Максимумы света наблюдаются в точках экрана, для которых выполняется условие максимума:

Условие максимума: на разности хода волн укладывается четное число полуволн (целое число длин волн): Δ=k·λ, (1)

где Δ=АС — разность хода волн; λ — длина световой волны; k — номер максимума.

Центральный максимум (в точке О) называют нулевым; для него Δ=0. Слева и справа от него располагаются максимумы высших порядков. Условие возникновения максимума можно записать иначе:

где k=0; ± 1; ± 2; ± 3.

Здесь d — период дифракционной решётки в мм, φ — угол, под которым виден световой максимум k-го порядка в точке N на расстоянии а от нулевого максимума, а λ — длина волны.

Так как углы дифракции малы, то для них можно принять: sin φ ≈ tg φ, а tg φ=a/b.

Поэтому: , и искомая длина световой волны равна (2)

В данной работе формулу (2) используют для вычисления длины световой волны.

Из условия максимума следует sinφ=(k·λ)/d .

Известно, что λ кр>λ ф , следовательно sinφ кр> sinφ ф. Т.к. y= sinφ ф — функция возрастающая, то φ кр>φ ф

Поэтому фиолетовый цвет в дифракционном спектре располагается ближе к центру.

Между максимумами расположены минимумы освещенности. Чем больше общее число щелей и чем ближе друг к другу они расположены, тем более широкими промежутками разделены максимумы.

Картина дифракции лазерного излучения красно цвета на решётках с различным числом щелей на 1 мм:

Ход работы

  1. Перенести рисунок в тетрадь.

  1. Подготовить таблицу для записи результатов измерений:

Порядок спектра,

цвет

Постоянная
решётки,

мм

Расстояние от решётки до экрана,

мм

Расстояние от нулевого максимума до максимума k-порядка

мм

Длина волны,

нм

Средняя длина волны

нм

Относительная погрешность
измерения

δ

  1. Укрепить в штативе линейку с экраном и закрепить на направляющей линейки дифракционную решётку.
  2. Установить расстояние от решётки до экрана 40 см (b).Результат записать в таблицу.
  3. Смотря через дифракционную решётку, направить прибор на источник света. Пронаблюдать спектр:

Измерить на экране расстояние а между нулевым максимумом и максимумом 1-го порядка для красного света. Результат записать в таблицу.

  1. Измерить на экране расстояние амежду нулевым максимумом и максимумом 2-го порядка для красного света. Результат записать в таблицу.
  2. Повторить опыт, измерив на экране расстояние амежду нулевым максимумом и максимумом 1-го и 2-го порядка для фиолетового света. Результат записать в таблицу.
  3. По формуле рассчитать длину волны излучения.
  4. Найти среднее значение длины волны светового излучения для красного λ кр ср =( λ кр1 +λ кр2) /2
    и фиолетового света .λ ф ср =( λ ф1 +λ ф2) /2
  1. Зная истинное значение длины волны лазерного излучения , рассчитать относительную погрешность измерений:

Диапазон длин волн, нм

Красный 625—740 нм (λкр табл= 680 нм)

Фиолетовый 380—440 нм (λф табл = 410 нм)

  1. Записать вывод по результатам выполненной работы.
  2. Ответить письменно на контрольные вопросы.

Контрольные вопросы

  1. Какие волны называются когерентными?
  2. В чём заключается явление дифракции?
  3. Какие свойства света подтверждает дифракция света?
  4. При каких условиях наблюдается дифракция света?
  5. Как образуется дифракционный спектр?
  6. Почему максимумы располагаются как слева, так и справа от нулевого максимума?
  7. В чём разница в дифракционных картинах решёток с 50 и 300 штрихами на одном миллиметре?
Читайте также:  Моль единица измерения буква

Источник

Лабораторная работа №2 (решеба, ответы) по физике 11 класс — Определение световой волны с помощью дифракционной решётки

вкл. 01 Декабрь 2016 .

Лабораторная работа №2 (решеба, ответы) по физике 11 класс — Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L

45—50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы — отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота — величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Источник

Лабораторная работа «Определение длины световой волны»
опыты и эксперименты по физике на тему

Лабораторная работа.

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

d = a + b – период дифракционной решетки

d ∙ sin Длину волны определяем по формуле: λ = (d ∙ sin

Вложение Размер
laboratornaya_rabota_opredelenie_dliny_svetovoy_volny.doc 256 КБ

Предварительный просмотр:

Тема: Определение длины световой волны.

Цель работы: опытным путем определить длину световой волны.

Оборудование: прибор для определения длины световой волны, дифракционная решетка и источник света.

Теоретическая часть работы: Дифракционная решетка представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками.

d = a + b – период дифракционной решетки

d ∙ sin = k ∙ λ, k = 0, 1, 2… — формула дифракционной решетки,

φ – угол, под которым наблюдается max света соответствующего цвета.

В работе используется дифракционная решетка с периодом 1/100 мм, 1/50 мм (период указана на решетке). Она является основной частью измерительной установки показанной на рис.1. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же устанавливается черный экран 4 с узкой вертикальной щелью 5, посередине, экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой (для получения наибольшей резкости). На экране и линейки имеются мм шкалы. Если смотреть сквозь решетку и прорезь на источник света, то на черном фоне экрана можно наблюдать по обе стороны от щели дифракционные спектры 1-го, 2- го и т. д. порядков (случайный перекос в расположении спектров устраняется поворотом рамки с решеткой).

Длину волны определяем по формуле: λ = (d ∙ sin )/ k.

Используя рис.2 и формулу дифракционной решетки, докажите, что длину световой волны можно определить по формуле: λ = (d ∙ b) / (k ∙ а), k – порядок спектра.

При выводе этой формулы учтите, что вследствие малости углов (не менее > 5) под которым наблюдаются максимумы, их sin можно заменить на tg.

Расстояние а отсчитывают по линейке от решетки до экрана, b – по шкале экрана от щели до выбранной линии спектра. В этой работе погрешность измерений λ не оценивается из-за неопределенности выбора середины части спектра данного цвета.

Практическая часть работы.

  1. Собрать измерительную установку, установить экран на расстоянии, на котором четко просматриваются спектры.
  2. Глядя сквозь дифракционную решетку и щель в экране на источник света, и перемещая экран, установите его так, чтобы дифракционные спектры располагались параллельно шкале экрана.
  3. Не двигая прибора, по шкале определите положение середин цветных полос в спектрах I по-

рядка. Результаты запишите в таблицу. Определить среднее значение результатов измерения.

Источник

Лаб. 4

  • L = 0.0005 м + 0.0005 м = 0.001 м
  • l = 0.0005 м + 0.0005 м = 0.001 м

2. В каком порядке следуют основные цвета в дифракционном спектре? Совпадает ли этот порядок с порядком следования цветов в радуге?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится характер дифракционного спектра, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота — величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Источник

Лабораторная работа «ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ»

ДИФРАКЦИОННОЙ РЕШЕТКИ

ЦЕЛЬ РАБОТЫ: Определить длину световой волны красного и фиолетового цвета.

ОБОРУДОВАНИЕ: 1. Прибор для определения длины световой волны,

2. источник света, 3. дифракционная решетка.

ТЕОРИЯ: Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой, распространяется по всевозможным направлениям и интерферирует. На экране, расположенном на пути интерферирующего света, можно наблюдать интерференционную картину. Максимумы света наблюдаются в точках экрана, для которых выполняется условие:  = n , где D – разность хода волн, n – номер максимума, l — длина световой волны. Центральный максимум называют нулевым; для него  = 0. Слева и справа от него располагаются максимумы высших порядков.

Условие возникновения максимума можно записать иначе:

где d – период дифракционной решетки, j – угол, под которым виден световой максимум (угол дифракции).

Так как углы дифракции, как правило, малы, то для них можно принять

sin  = tg , а tg  = a/b

Поэтому n×l = d×a/b

Белый свет по составу – сложный. Нулевой максимум для него – белая полоса, а максимум высших порядков – набор семи цветных полос, совокупность которых называют спектром соответственно 1 го , 2 го , … порядка, причем, чем больше длина волны, тем дальше максимум от нулевого.

Получить дифракционный спектр можно, используя прибор для определения длины световой волны.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

Установить на демонстрационном столе лампу и включить ее.

Смотря через дифракционную решетку, направить прибор на лампу так, чтобы через окно экрана прибора была видна нить лампы.

Экран прибора установить на расстоянии 400 мм от дифракционной решетки и получить на нем четкое изображение спектров 1 го и 2 го порядков.

Определить расстояние от нулевого деления «0» шкалы экрана до середины фиолетовой полосы, как в левую сторону «а л », так и в правую «а п », для спектров первого порядка и вычислить среднее значение «а ср.ф »

Опыт повторить со спектром второго порядка. Определить для него а ср.ф2

Такие же измерения выполнить и для красных полос дифракционного спектра.

Вычислить длину волны фиолетового света, длину волны красного света (для 1 го и 2 го порядков) по формуле:

где d = 10 -5 м – постоянная ( период) решетки,

n – порядок спектра,

b – расстояние от дифракционной решетки до экрана, мм

8. Определить средние величины:

9. Определить погрешности измерений:

10. Оформить отчет. Результаты измерений и вычислений занести в таблицу.

длина световой волны

11. Сделать вывод.

Что такое дифракция света?

Что такое дифракционная решетка?

В каких точках экрана получаются 1, 2, 3 максимумы? Как они выглядят?

Определить постоянную дифракционной решетки, если при освещении ее светом с длиной волны 600 нм максимум второго порядка виден под углом 7

Определить длину волны, если максимум первого порядка отстоит от нулевого максимума на 36 мм, а дифракционная решетка с постоянной 0,01 мм, находится от экрана на расстоянии 500 мм.

Определить длину волны, падающую на дифракционную решетку, на каждом миллиметре которой нанесено 400 штрихов. Дифракционная решетка с находится от экрана на расстоянии 25 см, максимум третьего порядка отстоит от нулевого максимума на 27,4 см.

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

  • 16 предметов
  • Для учеников 1-11 классов и дошкольников
  • Бесплатные наградные документы для учеников и учителей

ТЕОРИЯ: Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой, распространяется по всевозможным направлениям и интерферирует. На экране, расположенном на пути интерферирующего света, можно наблюдать интерференционную картину. Максимумы света наблюдаются в точках экрана, для которых выполняется условие: D = n×l, где D – разность хода волн, n – номер максимума, l — длина световой волны. Центральный максимум называют нулевым; для него D = 0. Слева и справа от него располагаются максимумы высших порядков.

Условие возникновения максимума можно записать иначе:

где d – период дифракционной решетки, j – угол, под которым виден световой максимум (угол дифракции).

Так как углы дифракции, как правило, малы, то для них можно принять

sin j = tg j, а tg j = a/b

Поэтому n×l = d×a/b

Белый свет по составу – сложный. Нулевой максимум для него – белая полоса, а максимум высших порядков – набор семи цветных полос, совокупность которых называют спектром соответственно 1 го , 2 го , … порядка, причем, чем больше длина волны, тем дальше максимум от нулевого.

Получить дифракционный спектр можно, используя прибор для определения длины световой волны.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

    1. Установить на демонстрационном столе лампу и включить ее.

2. Смотря через дифракционную решетку, направить прибор на лампу так, чтобы через окно экрана прибора была видна нить лампы.

3. Экран прибора установить на расстоянии 400 мм от дифракционной решетки и получить на нем четкое изображение спектров 1 го и 2 го порядков.

4. Определить расстояние от нулевого деления «0» шкалы экрана до середины фиолетовой полосы, как в левую сторону «ал», так и в правую «ап», для спектров первого порядка и вычислить среднее значение «аср.ф»

    5. Опыт повторить со спектром второго порядка. Определить для него аср.ф2

    6. Такие же измерения выполнить и для красных полос дифракционного спектра.

    7. Вычислить длину волны фиолетового света, длину волны красного света (для 1 го и 2 го порядков) по формуле:

    где d = 10 -5 м – постоянная ( период) решетки,

    n – порядок спектра,

    b – расстояние от дифракционной решетки до экрана, мм

    где d = 10 -5 м – постоянная ( период) решетки,

    n – порядок спектра,

    b – расстояние от дифракционной решетки до экрана, мм

    8. Определить средние величины:

    λф= ; λкр=

    9. Определить погрешности измерений:

    абсолютные – Δ λф = |λср.ф.— λтаб.ф. | ; где λтаб.ф = 0,4 мкм

    Δ λкр = |λср.кр.— λтаб.кр. | ; где λтаб.кр = 0,76 мкм

    относительные – δ λф = %; δ λкр = %

    10. Оформить отчет. Результаты измерений и вычислений занести в таблицу.

    длина световой волны

    11. Сделать вывод.

    Номер материала: ДБ-795521

    Не нашли то что искали?

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

    Источник

    Сравнить или измерить © 2021
    Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.