Меню

Математический маятник измерение периода колебания



Математический маятник — определение, формулы и принцип действия

Простая гравитация

Так называемый простой маятник — это всего лишь идеализированная математическая модель. Это груз на конце безмассового шнура, подвешенного на оси без трения. Если его толкнуть, он будет раскачиваться с постоянной амплитудой, но с некоторыми условиями:

  1. Стержень или нить, на котором качается отвес, не имеет массы и не может растягиваться.
  2. Груз — это точечная масса.
  3. Движение происходит только в двух измерениях, то есть отвес не может очертить эллипс, а только дугу.
  4. Энергия движения не расходуется на трение или сопротивление воздуха.
  5. Гравитационное поле однородно.
  6. Поддержка всей конструкции не двигается.

Дифференциальное уравнение, которое представляет движение простого маятника, выглядит следующим образом (где g — ускорение силы тяжести, ℓ — длина маятника, θ — угловое смещение): d² / dt² + g / ℓ sin θ = 0.

На графике 1 показаны силы, действующие на отвес. Стоит обратить внимание, что груз описывает дугу. Угол θ измеряется в радианах, и это имеет решающее значение для этой формулы. Синяя стрелка — гравитационная сила, которая действует на маятник, а фиолетовые векторы — это та же самая сила, только разложенная на компоненты, параллельные и перпендикулярные мгновенному движению груза.

Направление мгновенной скорости всегда указывается вдоль красной оси, которая считается тангенциальной, поскольку её направление всегда касается окружности. И прежде чем вывести уравнение силы деривации, стоит вспомнить второй закон Ньютона: F = ma. За F принимают сумму сил, действующих на объект, m — масса, a — ускорение.

Поскольку интерес составляет только измерение скорости, а груз вынужден оставаться на круговой траектории, уравнение Ньютона применяется только к тангенциальной оси. Короткая фиолетовая стрелка представляет компонент гравитационной силы, используя тригонометрию можно определить её величину. Таким образом, получается (g — ускорение силы тяжести вблизи поверхности земли): F = — mg sin θ = ma; a = — g sin θ.

Отрицательный знак на правой стороне означает, что θ и отвес всегда указываются в противоположных направлениях. Это вполне логично, поскольку когда маятник качается сильнее влево, ожидается, что он ускорится при движении назад — вправо. Это линейное ускорение, a вдоль красной оси может быть связано с изменением угла θ по формулам длины дуги (s): s = ℓθ; v = ds / dt = ℓdθ / dt; a = d²s / dt² = ℓd²θ / dt². Из этого следует: ℓd²θ/dt² = — gsin θ, d²θ / dt² + d / ℓ sin θ = 0.

Крутящий момент

Для начала нужно определить этот показатель на маятниковом шарнире, используя силу, вызванную гравитацией (Fg): T = ℓ x Fg, где ℓ — векторы длины маятника.

Здесь самое время рассмотреть величину крутящего момента на маятнике: |T| = — mgℓ sinθ, где m — масса, g — ускорение силы тяжести, ℓ — длина, а θ — угол между вектором длины и гравитацией. Далее, самое время переписать момент импульса: L = r x p = mr x (ꞷ x r).

Просто величина углового момента и его производная по времени: |L| = mr² w = mℓ² d²θ / dt². ​Формула крутящего момента после всех вычислений будет выглядеть следующим образом: T = r x F = dL / dt.

Сохранение механической энергии

Такое уравнение можно получить с помощью одноимённого принципа. Формулируется он так: любой объект, падающий на вертикальное расстояние h, получит кинетическую энергию, равную той, которую потерял при падении. Изменение потенциальной энергии выражается: Δ U = mgh, тогда как кинетическая (отвес начал движение с покоя) представлена формулой: Δ K = 1/2 mu².

Поскольку, как известно, никакая энергия не теряется, выигрыш в одном должен быть равен потере в другом: 1/2 mu² = mgh.

Колебательные движения

Период колебаний математического маятника (простого гравитационного) зависит от его длины, локальной силы тяжести и в небольшой степени от максимального угла, от которого отвес отклоняется от вертикали θ 0, называемого амплитудой.

Он не зависит от массы груза. Если амплитуда ограничена малыми колебаниями, то на период T, время, необходимое для полного цикла является: T≈ 2 π √ L/g. При этом L — длина маятника, а g — местное ускорение гравитации.

Нужно сказать, что для небольших колебаний период не зависит от амплитуды. Такое свойство называется изохронизмом, именно оно стало причиной того, что маятники используются для хронометража. Последовательные колебания маятника, даже если они меняются по амплитуде, занимают одинаковое количество времени. Для большого размаха свойственно увеличение периода с каждым раскачиванием, поэтому он длиннее, чем задано уравнением, отражающим частоту колебаний математического маятника.

Период возрастает до бесконечности как только θ 0 приближается к 180°, так как это значение является нестабильной точкой равновесия для маятника. Истинный период может быть записан в нескольких различных формах, например, бесконечный ряд: T = 2 π √ L/g )1+ 1/16 θ²/º + 11/3072 θ ⁴/º + . ). Разница между истинным и периодом небольших колебаний называется круговой ошибкой. В случае с типичными напольными часами, у которых маятник имеет размах 6° и, следовательно, амплитуду 3° (0,05 радиана), разница составит около 15 секунд в день.

Читайте также:  Измерение молниезащиты импульсным методом

Формула математического маятника, при малых колебаниях, когда он приближается к гармоническому осциллятору, и его движение, как функция времени t, находит выражение следующим образом: θ(t) = θₒ cos (2 π / T * t + ⱷ). Где фи (ⱷ) — постоянная величина, зависящая от начальных условий. Для маятников этот период незначительно меняется в зависимости от некоторых факторов, например:

  • плавучесть и вязкостное сопротивление воздуха;
  • масса нити или стержня;
  • размер и форма отвеса и способы его прикрепления к шнуру;
  • гибкость и растяжение нити.

Если необходимы точные расчёты, конечно, все эти поправки должны учитываться.

Составной маятник

Другое название — физический, представляет собой любое качающееся твёрдое тело, свободно вращающееся вокруг фиксированной горизонтальной оси. Соответствующая эквивалентная длина — L, а для расчёта времени используется расстояние от оси до центра колебаний. Эта точка расположена над центром массы на расстоянии от оси, традиционно называемым радиусом колебаний, который зависит от распределения веса груза.

Христиан Гюйгенс в 1673 году доказал, что точка вращения и центр колебаний взаимозаменяемы. Это означает, если какой-либо маятник перевёрнут и ротирован от оси, расположенной в его предыдущем центре колебаний, он будет иметь тот же период, что и раньше, и новый центр будет находиться в старой точке вращения.

В 1817 году Генри Кэтер использовал эту идею для создания обратимого маятника, теперь известного под именем создателя, для улучшения измерений ускорения под действием силы тяжести.

Историческая хроника

Одним из самых ранних известных применений маятника было устройство сейсмометра (I века) китайского учёного династии Хань Чжан Хэна. Его функция состояла в том, чтобы раскачивать и активировать один из серии рычагов после того, как он был нарушен тремором землетрясения, которое происходило далеко от места измерения. Освобождённый рычагом, маленький шарик выпадал из устройства в форме урны в одну из восьми горловин металлической жабы внизу, в восьми точках компаса, что указывало направление землетрясения.

Многие источники утверждают, что египетский астроном X века Ибн Юнус использовал маятник для измерения времени, но это была ошибка, возникшая в 1684 году с британским историком Эдвардом Бернардом.

В эпоху Возрождения большие маятники с ручной накачкой использовались в качестве источников энергии для ручных поршневых машин, таких как пилы, сильфоны и насосы. Леонардо Давинчи сделал много рисунков движения маятников, хотя и не осознавал его значения для хронометража.

Исследования Галилея

Итальянский учёный Галилео Галилей был первым, кто начал изучать свойства маятников, начиная примерно с 1602 года. Самый ранний существующий отчёт о его исследованиях содержится в письме Гвидо Убальдо дель Монте из Падуи от 29 ноября 1602 года. Его биограф и ученик, Винченцо Вивиани, утверждал, что его интерес был вызван около 1582 года, когда физик раскачивал люстры в соборе Пизы.

Галилей обнаружил важнейшее свойство, которое делает маятники полезными в качестве хронометриста, называемое изохронизмом; период маятника приблизительно не зависит от амплитуды или ширины качания. Он также обнаружил, что период не зависит от массы отвеса и пропорционален квадратному корню из длины всей конструкции. Сначала он использовал маятники свободного вращения в простых приложениях синхронизации.

Его друг — врач Санторио Санторий, используя наработки Галилея, изобрёл прибор, который измерял пульс пациента. В 1641 году Галилео задумал и продиктовал своему сыну Винченцо конструкцию маятниковых часов. Тот начал строительство, но не завершил его, поскольку умер в 1649 году. Так, появился первый гармонический осциллятор, использованный человеком.

Маятниковые часы

Первый образец построил в 1656 году голландский учёный Христиан Гюйгенс. Это было значительное улучшение по сравнению с существующими механическими часами. Их точность была улучшена с отклонений от 15 минут до 15 секунд в день. Маятники распространились по Европе, так как все существующие часы стали модифицироваться.

Английский учёный Роберт Гук изучил конический маятник (около 1666), который мог свободно колебаться в двух измерениях, а груз вращаться по кругу или эллипсу. Он использовал движение этого устройства в качестве модели для анализа орбитального движения планет. Гук предложил Исааку Ньютону в 1679 году свои наработки.

Он утверждал, что составляющие орбитального движения состояли из инерционного движения по касательному направлению и привлекательного движения в радиальном направлении. Это сыграло свою роль в формулировке Ньютоном закона всемирного тяготения. Роберт Гук также был ответственным за то, что ещё в 1666 году предположил, что маятник можно использовать для измерения силы тяжести.

Читайте также:  Спортивный прибор для измерения пульса

Во время своей экспедиции в Кайенна (Французская Гвиана) в 1671, Жан Рише обнаружил, что там часы с маятником шли на 2,5 минуты медленнее, чем в Париже. Из этого он сделал вывод, что сила гравитации была ниже в Кайенне. В 1687 году Исаак Ньютон в Principia Mathematica показал, что это произошло потому, что Земля была не настоящей сферой, а слегка сплюснутой (сплющенной на полюсах) от действия центробежной силы из-за её вращения, это и вызывает увеличение силы гравитации.

Портативные маятники стали совершать рейсы в дальние страны, в качестве прецизионных гравиметров для измерения ускорения свободного падения в разных точках Земли, что в итоге привело к определению точной модели формы планеты. Затем последовало превращение исследований и выводов учёных в новые классы приборов, с дополнительными параметрами. Например:

  • 1721 г. — маятник с температурной компенсацией;
  • 1851 г. — маятник Фуко.

В 1930 году решение задачи по точному хронометражу было найдено, в 1921 был изобретён кварцевый генератор.

Источник

Колебательное движение. Математический маятник

п.1. Механические колебания

Кроме прямолинейного и криволинейного движения, с которыми мы уже познакомились, существует еще один вид механического движения – колебательный.

Примеры колебательных движений:

  • движение маятника в часах;
  • колебание автомобиля на рессорах;
  • покачивание деревьев на ветру;
  • раскачивание качели;
  • сокращения сердца и легких;
  • движение крыльев насекомых и птиц.

п.2. Математический маятник

В положении равновесия тело (шарик) находится внизу.
Отклонение от положения равновесия называют смещением тела, обозначают буквой x и измеряют в метрах (в СИ).
Наибольшее смещение маятника от положения равновесия называют амплитудой колебаний, обозначают буквой A.
В проекции на горизонтальную ось OX смещение изменяется в интервале \(-A\leq x\leq A\).
В положении равновесия x=0.
Если маятник после смещения в положение 1, прошел положение равновесия 2, отклонился в положение 3, опять прошел положение 2, и вернулся в положение 1, говорят, что маятник совершил полное колебание.

п.3. Параметры колебаний математического маятника

Период и частота колебаний – взаимно обратные величины
Период в СИ измеряют в секундах, частоту – в герцах: 1 Гц=1 c -1
Формула для периода колебаний справедлива для небольших отклонений маятника (на угол порядка 15-20° от положения равновесия).

п.4. Задачи

Задача 1. Маятник совершил 3 полных колебания за 9 с. Найдите период и частоту его колебаний. Чему равна длина нити, на которой подвешен маятник (ответ дайте в см, с округлением до целых)?

Дано:
\(N=3\)
\(t=9\ c\)
__________________
\(T,\ f,\ L-?\)
Период колебаний: \(T=\frac tN\)
Частота колебаний: \(f=\frac 1T=\frac Nt\)
Длина нити: $$ T=2\pi\sqrt<\frac Lg>\Rightarrow \sqrt<\frac Lg>=\frac<2\pi>\Rightarrow \frac Lg=\left(\frac<2\pi>\right)^2\Rightarrow L=g\left(\frac<2\pi>\right)^2 $$ Подставляем: \begin T=\frac 93=3\ (c)\\ f=\frac 13\ (Гц)\\ L=9,8\cdot\left(\frac<3><2\pi>\right)^2\approx 2,234\ (м)\approx 223\ (см) \end Ответ: 3 с; 1/3 Гц; 223 см

Задача 2. Математический маятник колеблется с частотой 20?тиы кГц. Найдите период колебаний и число колебаний в минуту.

Дано:
\(f=20\ кГц=2\cdot 10^4\ Гц\)
\(t=1\ мин=60\ с\)
__________________
\(T,\ N-?\)
Период колебаний: \(T=\frac 1f\)
Частота колебаний за время \(t:\ N=ft\)
Подставляем: \begin T=\frac<1><2\cdot 10^4>=0,5\cdot 10^<-4>\ (c)=50\cdot 10^<-6>\ (c)=50\ (мкс)\\ N=2\cdot 10^4\cdot 60=1,2\cdot 10^6 \end Ответ: 50 мкс; 1,2·10 6

Задача 3. Расстояние от улья до цветочного поля 600 м. Пчела летит за нектаром со скоростью 8 м/с и машет крылышками с частотой 440 Гц. Возвращаясь в улей с нектаром, пчела летит со скоростью 5 м/с и машет крылышками с частотой 320 Гц. Найдите разность в количестве взмахов крылышками на пути туда и обратно.

Время полета из улья за нектаром \(t_1=\frac\)
Количество взмахов крылышками \(N_1=f_1 t_1=f_1\frac\)
Аналогично количество взмахов на пути назад \(N_2=f_2\frac\)
Найдем каждое из \(N\): \begin N_1=440\cdot\frac<600><8>=33000\\ N_2=320\cdot\frac<600><5>=38400 \end На пути обратно пчела с грузом делает больше взмахов. Искомая разность: $$ \triangle N=N_2-N_1=38400-33000=54000 $$ Ответ: 5400

Задача 4. Определите длину математического маятника с периодом колебаний 1с, если он находится: а) на Луне (\(g_л=1,6\ м/с^2\)); б) на Марсе (\(g_м=3,6\ м/с^2\)). Ответ запишите в см, с точностью до десятых.

Длина нити: \begin T=2\pi\sqrt<\frac Lg>\Rightarrow\sqrt <\frac Lg>=\frac<2\pi>\Rightarrow\frac Lg=\left( \frac<2\pi>\right)^2\Rightarrow L = g\left(\frac<2\pi>\right)^2 \end На Луне: $$ L_л=1,6\cdot\left(\frac<1><2\pi>\right)^2\approx 0,0405\ (м)\approx 4,1\ (см) $$ На Марсе: $$ L_м=3,6\cdot\left(\frac<1><2\pi>\right)^2\approx 0,0912\ (м)\approx 9,1\ (см) $$ Ответ: 4,1 см; 9,1 см

п.5. Лабораторная работа №4. Исследование колебаний математического маятника

Цель работы
Исследовать, от каких величин зависит период колебаний математического маятника.

Читайте также:  Единица измерения циклической частоты маятника

Теоретические сведения
При малых отклонениях (порядка 15-20° от вертикали) период колебаний математического маятника определяется формулой: $$ T=2\pi\sqrt <\frac Lg>$$ где \(L\) – длина маятника, \(g\) – ускорение свободного падения.
Для работы принять \(g\approx 9,80665\ м/с^2\).
При заданном периоде колебаний для длины маятника получаем: $$ L=g\left(\frac<2\pi>\right)^2 $$

Приборы и материалы
Два лабораторных грузика по 100 г, крепкая нить (1,5-2 м), линейка (30-50 см), штатив, секундомер.

Ход работы
1. Рассчитайте длину нитей, необходимых для создания маятников с периодами колебаний \(T_1=1 с;\ T_2=2 с\).
2. Закрепите один грузик на нити и подвесьте его на штативе так, чтобы длина подвеса была равна расчетной длине \(L_1\).
3. Отклоните грузик на небольшой угол, отпустите его и с помощью секундомера измерьте время, за которое маятник совершит 10 полных колебаний. Повторите опыт 5 раз. Проведите расчеты для определения периода колебаний \(T_<1\ эксп>\) по методике, изложенной в лабораторной работе №2 (см. §4 данного справочника).
4. Теперь подвесьте грузик так, чтобы длина подвеса была равна расчетной длине \(L_2\). Повторите серию из 5 экспериментов и определите \(T_<2\ эксп>\).
5. При длине подвеса \(L_2\) подвесьте к первому грузику второй. Повторите серию из 5 экспериментов и определите \(T ‘\). Сравните \(T ‘\) и \(T_<2\ эксп>\).
6. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

Расчет длины нитей \begin L=g\left(\frac<2\pi>\right)^2\\ T_1=1\ c,\ \ L_1=9,80665\cdot\left(\frac<1><2\pi>\right)^2\approx 0,248\ (м)=24,8\ (см)\\ T_2=2\ c,\ \ L_1=9,80665\cdot\left(\frac<2><2\pi>\right)^2\approx 0,9994\ (м)=99,4\ (см) \end

Определение \(T_<1\ эксп>\)
Инструментальная погрешность секундомера \(d=\frac<\triangle><2>=0,1\ c\)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
\(t,\ c\) 9,7 10,2 9,8 9,9 10,3 50
\(\triangle\ c\) 0,3 0,2 0,2 0,1 0,3 1

\begin t_=\frac<50><5>=10\\ \triangle_=\frac 15=0,2 \end Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ \triangle t=max\left\\right\>=max\left\<0,1;0,2\right\>=0,2\ \text $$ Результат измерения времени 10 колебаний: \begin t=t_0\pm\triangle t,\ \ t=(10,0\pm 0,2)\ c \end Период колебаний в 10 раз меньше: $$ T_<1\ эксп>=\frac<1><10>(t_0\pm\triangle t),\ \ T_<1\ эксп>=(1,00\pm 0,02)\ c $$ Относительная погрешность измерений: $$ \delta_T=\frac<\triangle T>>\cdot 100\text<%>=\frac<0,02><1>\cdot 100\text<%>=2,0\text <%>$$

Определение \(T_<2\ эксп>\)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
\(t,\ c\) 19,7 20,1 19,8 20,2 19,7 99,5
\(\triangle\ c\) 0,2 0,2 0,1 0,3 0,2 1

\begin t_=\frac<99,5><5>=19,9\\ \triangle_=\frac 15=0,2 \end Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ \triangle t=max\left\\right\>=max\left\<0,1;0,2\right\>=0,2\ \text $$ Результат измерения времени 10 колебаний: \begin t=t_0\pm\triangle t,\ \ t=(19,9\pm 0,2)\ c \end Период колебаний в 10 раз меньше: $$ T_<2\ эксп>=\frac<1><10>(t_0\pm\triangle t),\ \ T_<2\ эксп>=(1,99\pm 0,02)\ c $$ Относительная погрешность измерений: $$ \delta_T=\frac<\triangle T>>\cdot 100\text<%>=\frac<0,02><1,99>\cdot 100\text<%>\approx 1,0\text <%>$$

Определение \(T ‘\) (с двумя грузиками)
Время 10 колебаний

№ опыта 1 2 3 4 5 Сумма
\(t,\ c\) 20,2 19,7 19,6 20,0 20,3 99,8
\(\triangle\ c\) 0,24 0,26 0,36 0,04 0,34 1,24

\begin t_=\frac<99,8><5>=19,96\\ \triangle_=\frac<1,24><5>\approx 0,25 \end Среднее абсолютное отклонение больше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ \triangle t=max\left\\right\>=max\left\<0,1;0,25\right\>=0,25\ \text $$ Результат измерения времени 10 колебаний: \begin t=t_0\pm\triangle t,\ \ t=(19,96\pm 0,25)\ c \end Период колебаний в 10 раз меньше: $$ T’=\frac<1><10>(t_0\pm\triangle t),\ \ T’=(1,996\pm 0,025)\ c $$ Относительная погрешность измерений: $$ \delta_T=\frac<\triangle T>\cdot 100\text<%>=\frac<0,025><1,996>\cdot 100\text<%>\approx 1,3\text <%>$$

Полученные на опыте интервалы для \(T_<2\ эксп>\) и \(T’\) (одинаковая длина нити \(L_2\) и разные массы грузиков – 100 г и 200 г соответственно): \begin 1,97\leq T_<2\ эксп>\leq 2,01\\ 1,971\leq T’\leq 2,021 \end Таким образом, \(T_<2\ эксп>\approx T’\), т.е. период колебаний математического маятника не зависит от массы груза.

Выводы
На основании проделанной работы можно сделать следующие выводы.

В работе с помощью расчетной формулы были определены длины нитей подвеса для маятников с периодами колебаний \(T_1=1\ с;\ T_2=2\ с\).
Полученный на опыте период колебаний для подвеса с \(L_1=24,8\ см\) с грузиком 100 г равен $$ T_<1\ эксп>=(1,00\pm 0,02)\ c,\ \ \delta=2,0\text <%>$$ Полученный на опыте период колебаний для подвеса с \(L_2=99,4\ см\) с грузиком 100 г равен $$ T_<2\ эксп>=(1,99\pm 0,02)\ c,\ \ \delta=1,0\text <%>$$ Полученный на опыте период колебаний для подвеса с \(L_2=99,4\ см\) с грузиком 200 г равен $$ T’=(1,996\pm 0,025)\ c,\ \ \delta=1,3\text <%>$$ Формула \(T=2\pi\sqrt<\frac Lg>\) данными экспериментами подтверждена.
Период колебаний математического маятника зависит от длины подвеса и не зависит от массы грузика на подвесе.

Источник