Меню

Методика измерения давления манометр



Методика измерения давления и разности давлений. Правила и методы установки манометров.

Погрешность измерения давления зависит от инструментальных погрешностей измерительных приборов, условий эксплуатации манометров, способов отбора давления и его передачи к приборам. При выборе пределов измерения манометра руководствуются значениями измеряемого давления и характером его изменений. При стабильном измеряемом давлении его значение должно составлять 3/4 диапазона измерения прибора, а в случае переменного давления 2/3. Для исключения возможности образования взрывоопасных и горючих смесей манометры, предназначенные для измерения давления таких газов, как кислород, водород, аммиак, окрашивают в соответствии со стандартом в голубой, темно-зеленый, желтый цвета.

Правила установки манометров на промышленных объектах, отбора давления и его передачи к приборам с помощью импульсных линий регламентируются внутриведомственными нормалями, которыми руководствуются при монтаже измерительных устройств. Ниже рассмотрены основные положения этих руководящих материалов.

Манометры показывающие и с дистанционной передачей показаний, как правило, устанавливаются вблизи точек отбора давления в месте, удобном для обслуживания. Исключение составляют манометры, используемые для внутриреакторного контроля и контроля давления в устройствах, размещаемых на АЭС в зонах ограниченного доступа. Современные серийные преобразователи давления нельзя размещать внутри активной зоны, поэтому они находятся на значительном расстоянии от точек отбора давления, что приводит к росту инерционности показаний приборов. При этом необходимо учитывать, что наличие столба жидкости в импульсной линии создает систематическую погрешность показаний, которая будет иметь отрицательный или положительный знак в зависимости от того, находится манометр выше или ниже точки отбора давления. Импульсные линии дифманометров имеют большую длину, предельное значение которой составляет 50 м.

Отбор давления осуществляется с помощью труб, подсоединяемых к трубопроводу или внутреннему пространству объекта, где производится измерение давления. В общем случае трубка должна быть выполнена заподлицо с внутренней стенкой, чтобы у выступающей части не создавалось торможение потока. При измерении давления или разности давлений жидких сред не рекомендуется отбор давления про-изводить из нижних и верхних точек трубопровода, с тем чтобы в импульсные линии не попадали шлам и газы, при газовых средах — из нижних точек трубопровода, чтоб в импульсные линии не попадал конденсат.

При измерении напоров и разрежений в газоходах, воздуховодах, пылепроводах часто возникает необходимость сглаживания пульсаций давления и отделения взвешенных частиц.

Рис. 1. Схема отборного устройства с циклоном :

1 — циклон; 2 — пылепровод; 3 — металлическая стенка; 4,5 — трубки; 6 — отверстие с пробкой

На рис. 1 показана установка циклона I на линии отбора давления в пылепроводе 2, имеющего металлическую стенку 3. Подвод пылевоздушной смеси к циклону осуществляется трубкой 4 тангенциально, отбор давления к прибору из циклона производится из его средней части трубкой 5. В циклоне взвешенные частицы сепарируются и периодически удаляются из него через отверстие 6. Для сглаживания пульсаций перед измерительным прибором устанавливаются дроссели. Длина линий от точки отбора давления до прибора должна обеспечивать охлаждение измеряемой среды до температуры окружающего воздуха. С помощью кранов переключателей один напоромер или тягомер может подключаться к нескольким точкам отбора давления или разрежения.

Рис. 2. Схема установки манометра на трубопроводе :

1 — манометр; 2 — трехходовой кран; 3 — запорный вентиль; 4 — изогнутая кольцом трубка

Схема установки манометра 1 на трубопроводе представлена на рис. 2. Для обеспечения возможности отключения манометра, продувки линии и подключения контрольного манометра используется трехходовой кран 2, при измерении давления свыше 10 МПа (100 кгс/см2), а также при контроле давления радиоактивного теплоносителя дополнительный запорный вентиль 3 устанавливается на выходе из трубопровода. При измерении давления сред с температурой выше 70 °С трубка 4 сгибается кольцом, в котором вода охлаждается, а пар конденсируется. На АЭС продувка импульсных линий манометров и дифманометров, работающих с радиоактивными средами, осуществляется в специальную дренажную систему.

При измерении давления агрессивных, вязких и жидкометаллических сред для защиты манометров и дифманометров применяются мембранные и жидкостные разделители. Схема манометра с мембранным разделителем представлена на рис. 3.

Рис. 3. Схема манометра с мембранным разделителем :

1, 2 — агрессивная и нейтральная среда

1 — измеряемая среда; 2 — разделительный сосуд; 3 — линия, заполненная нейтральной средой

Агрессивная среда подается под мембрану 7, нижняя часть которой и прилегающие стенки покрыты фторопластом. Пространство над мембраной 2 и внутренняя полость манометрической пружины тщательно заполнены кремнийорганической жидкостью. Для того чтобы в процессе измерения давление над мембраной соответствовало измеряемому, необходимо, чтобы жесткость мембраны была намного меньше жесткости чувствительного элемента. При использовании жидкостных разделителей (рис. 4) это ограничение отсутствует.

Рис. 4. Схема установки манометров с разделительными сосудами при плотности измеряемой среды меньше плотности нейтральной (а) и больше (б) :

Нейтральная разделительная жидкость, заполняющая часть разделительного сосуда 2, измерительную камеру прибора и линии между ними 3, должна по плотности значительно отличаться от измеряемой среды 1 и не смешиваться с ней. На рис. 4, а плотность агрессивной среды меньше разделительной, а на рис. 4, б — больше.

При измерении разности давлений подключение дифманометров должно быть произведено таким образом, чтобы среда, заполняющая импульсные линии, не создавала погрешностей из-за разности плотностей или высот столбов жидкостей в них. Линии не должны иметь горизонтальных участков, минимальный угол наклона должен быть не менее 5°. При измерении разности давлений воды и пара измерительные камеры дифманометров предварительно должны быть заполнены водой.

Читайте также:  Основные направления средств измерения

От правильности показаний манометров зависит не только экономичность работы технологических объектов, но во многих случаях и безопасность, в связи с этим манометры и другие приборы давления подвергаются периодическим поверкам. Для большинства приборов межповерочный период составляет один год. Если приборы работают в условиях повышенной вибрации и температуры, то этот период может быть сокращен. Поверка приборов осуществляется представителями метрологических служб.

Для проведения поверок рабочих приборов давления используются образцовые приборы и устройства, воспроизводящие давление. У грузопоршневых манометров эти функции могут быть совмещены. При поверке манометров, предназначенных для измерения давления химически активных газов, например кислорода, нельзя использовать грузопоршневые манометры, заполненные маслом.

Источник

МЕТОДЫ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

Известны следующие основные методы измерения давления:

  • весовой,
  • пружинный,
  • силовой,
  • частотный,
  • пьезорезисторный,
  • термокондуктивный,
  • ионизационный
  • электрокинетический.

Рас­смотрим особенности этих методов.

1. Весовой метод [9]

Весовой метод основан на уравновешивании сил давления весом столба жидкости или эталонного груза. Построенные по этому методу поршневые манометры практически неприменимы на летательных аппаратах из-за больших погрешностей при на­клонах и ускорениях.

2. Пружинный метод [1], [9]

Пружинный метод основан на зависимости деформации упру­гого чувствительного элемента от приложенного давления. В манометрах деформация передается на отсчетное устройстве (рис. 6.1), а в датчиках преобразуется в электрическую величи­ну, которая и служит выходным сигналом (рис. 6.2). Область давлений, измеряемых пружинными манометрами и датчиками, лежит в пределах от нескольких мм вод. ст до сотен атмосфер.

3. Силовой метод [9]

Силовой метод основан на зависимости силы или момента сил, развиваемых неупругим или упругим чувствительным эле­ментом, от приложенного давления. По этому методу строятся две разновидности приборов и датчиков давления:

а — силовые датчики прямого преобразования (рис. 6.3), в ко­торых развиваемая чувствительным элементом сила преобразует­ся с помощью электрического преобразователя в электрическую величину; в качестве электрических преобразователей могут быть использованы угольные, полупроводниковые, пьезоэлектрические, магнитоупругие элементы [4], [7], [9], [12];

б — приборы и датчики с силовой компенсацией (рис. 6.4), в которых сила, развиваемая чувствительным элементом, урав­новешивается силой, создаваемой компенсирующим элементом[16].

В зависимости от типа компенсирующего устройства выход­ным сигналом может служить сила тока (см. рис. 6.4, а), линей­ное или угловое перемещение (см. рис. 6.4, б).

Силовой метод применим для измерения давлений в тех же пределах, что и пружинный метод.

4. Частотный метод [2], [5]

Частотный метод основан на зависимости частоты собствен­ных колебаний тонкостенного цилиндрического резонатора от разности давлений, действующих на его внутреннюю и внешнюю поверхности. Датчики, построенные по этому методу (рис. 6.5), называются вибрационными датчиками давления (ВДД).

С помощью электронной схемы периодически возбуждаются собственные колебания резонатора или он постоянно находится в автоколебательном режиме. Выходным сигналом ВДД может служить частота электрических импульсов, что позволяет исполь­зовать ВДД в системах с цифровыми вычислительными маши­нами.

5. Пьезорезисторный метод [9]

Пьезорезисторный метод основан на зависимости электриче­ского сопротивления проводника или полупроводника от величи­ны воздействующего на него давления. На рис. 6.6, а изображена схема пьезорезисторного датчика давления, чувствительным элементом которого является манганиновая проволока диаметром 0,03—0,05 мм.


При подаче давления в 1000 кГ/см 2 сопротивле­ние изменяется всего на 0,2%. Поэтому резисторные датчики с чувствительным проволочным элементом применимы для измере­ния очень высоких давлений (десятки тысяч атмосфер). Чувствительные полупроводниковые элементы (ферриты, керамиче­ские пьезоэлектрики и др.) обладают более высокой чувстви­тельностью, чем проволочные, но их характеристики нестабиль­ны и существенно зависят от температуры [4], [12].

6. Термокондуктивный метод [6], [10]

Термокондуктивный метод основан на зависимости теплопро­водности газа от его абсолютного давления (при малых абсолют­ных давлениях). При протекании по проволоке (см. рис. 6.6,6) электрического тока, сила которого поддерживается постоянной, температура нагрева проволоки будет зависеть от теплопровод­ности окружающего газа, которая линейно изменяется в зависи­мости от давления в области малых давлений. Температуру про­волоки можно измерять с помощью приваренной к ней термопа­ры, если же применить материал с большим температурным ко­эффициентом, то о температуре нагрева можно судить по изме­нению сопротивления проволоки. Чувствительность термокондуктивных датчиков зависит от состава газа.

Область применения термокондуктивного метода измерения давления ограничена пределами 10ч-10

7. Ионизационный метод [3], [6], [10], [15]

Ионизационный метод основан на зависимости степени иони­зации газа от давления. В зависимости от типа датчика иониза­ция газа создается за счет электронной эмиссии или радиоак­тивным излучением. Электронный датчик представляет собой трехэлектродную электронную лампу с накаливаемым катодом, внутрь которой подается измеряемое давление р (см. рис. 6.6, в). При наличии разности потенциалов между анодом и катодом, превышающей ионизационный потенциал газа, молекулы газа ионизируются электронами, летящими от катода к аноду. При этом на отрицательно заряженной сетке образуются положитель­ные ионы и создается сеточный ионизационный ток, величина которого при р=10 -3 мм рт. ст. пропорциональна абсолютному давлению, если анодный ток постоянен. Выходной величиной дат­чика служит ионизационный ток.

Область применения электронного датчика — от 10 -3 до 10 -3 мм рт, ст., величина сеточного тока при этом составляет 10 -4 10 -7 а.

Разновидностью ионизационных манометров является маг­нитный электроразрядный манометр, отличающийся от рассмот­ренного выше отсутствием накала катода. Молекулы газа, дав­ление которого измеряется, ионизируются свободными электро­нами, которые движутся с большой скоростью от катода к ано­ду, под влиянием высокого анодного напряжения от сотен до нескольких тысяч вольт. Для увеличения длины свободного про­бега электронов (с целью повышения вероятности их столкнове­ния с молекулами газа) между катодом и анодом создается маг­нитное поле, искривляющее траекторию движения электронов, которые движутся при этом по спирали. Сила тока газового раз­ряда имеет сравнительно большую величину — сотни микроам­пер, и может быть измерена без предварительного усиления. Пределы измерения магнитных газоразрядных манометров 10 -6 1 мм рт. ст.

Радиоактивный датчик давления отличается от электронного тем, что ионизация молекул газа создается под воздействием — частиц (положительно заряженных ядер гелия), образующихся при распаде радиоактивного вещества с достаточно большим периодом полураспада. В качестве источников излучения исполь­зуются препараты радия, полоний-210, плутоний-239. Слой ве­щества нанесен на один из двух электродов, помещенных внутрь камеры, в которую подается измеряемое давление (см. рис. 6.6, г). Последовательно с электродами включено сопротив­ление и подведено напряжение и. Выходной величиной служит ионизационный ток I или падение напряжения, создаваемое этим током на сопротивлении R. Это напряжение можно уси­лить с помощью усилителя с высоким входным сопротивлением. Недостатком радиоактивных датчиков является малая вели­чина ионизационного тока (10 -9 10 -16 а), вследствие чего к изоляции электродов и входной цепи усилителя предъявляются вы­сокие требования. В частности, во входном каскаде усилителя необходимо применять электрометрическую лампу. Давления, измеряемые радиоактивными датчиками, лежат в пределах 10 -3 10 3 мм рт. ст.

8. Электрокинетический метод [14]

Электрокинетический метод основан на возникновении элек­трокинетического потенциала полярной жидкости при ее перете­кании через пористую диафрагму. Построенный по этому мето­ду датчик давления (рис. 6.7), содержит диафрагму из кера­мики, помещенную внутрь цилин­дрического объема, ограничен­ного двумя мембранами и запол­ненного полярной жидкостью (на­пример, раствором йодистого ка­лия с небольшой добавкой йода, отрицательные ионы которого яв­ляются носителями зарядов). При воздействии на мембраны разности давлений часть жидко­сти перетекает сквозь диафрагму, причем образуется разность по­тенциалов, снимаемая двумя платиновыми электродами, поме­щенными по обе стороны диафрагмы. Электрокинетические дат­чики применимы для измерения переменных давлений, так как при постоянном давлении перетекание жидкости через диа­фрагму с течением времени прекращается. Частотный диапазон измеряемого давления может быть от десятых долей до несколь­ких сотен герц, диапазон измеряемых давлений — от тысячных долей до десятков атмосфер. Недостатком электрокинетических датчиков, помимо невозможности измерения постоянных давле­ний, является большая температурная погрешность.

Читайте также:  Приборы для измерение температуры при перевозке продуктов

Оценим рассмотренные методы с точки зрения их применимости на летательных аппаратах.

Достоинством электрических методов, лежащих в основе кондуктометрических, пьезорезисторных, ионизационных (электрон­ных, газоразрядных и радиоактивных) датчиков, является воз­можность преобразования давления в электрический сигнал без применения подвижных частей; однако этим датчикам присущи определенные недостатки, из-за которых они не находят широ­кого применения на летательных аппаратах: кондуктометрический и электронный датчики действуют лишь в области низких давлений, а пьезорезисторные — очень высоких; радиоактивные датчики обладают малой чувствительностью.

Из электрических методов измерения давления практическое применение имеет ионизационный метод; ионизационные датчи­ки используются на космических летательных аппаратах для из­мерения малых давлений верхних слоев атмосферы.

Электрохимические датчики пока не находят практического применения, так как они непригодны для измерения медленно измеряющихся давлений и, кроме того, имеют большие темпера­турные погрешности.

Электромеханические методы — силовой и пружинный — бо­лее пригодны для измерения давления на летательных аппара­тах, так как позволяют строить датчики, действующие в широ­ких пределах — от тысячных долей до сотен и даже тысяч ат­мосфер. Наиболее прост силовой метод прямого преобразования, но его применение ограничено из-за недостаточной точности эле­ментов, преобразующих развиваемое чувствительным элементом усилие в электрический сигнал; что касается пьезоэлектрических преобразователей, то они непригодны для измерения медленно изменяющихся давлений.

Метод силовой компенсации более перспективен с точки зре­ния повышения точности измерения давления, но датчики, по­строенные по этому методу, сравнительно сложны, что несколько ограничивает применение данного метода.

В связи с развитием бортовых цифровых вычислительных ма­шин перспективным является частотный метод измерения давле­ния, который пока еще недостаточно проработан.

Наиболее широкое применение на летательных аппаратах всех классов нашел пружинный метод, обеспечивающий достаточно точное измерение давления в нужном диапазоне. Ниже рассмат­риваются более подробно пружинные манометры и датчики дав­ления, а также электрические дистанционные манометры.

Источник

Методы и средства измерения давления

Давление характеризует напряженное состояние жидкостей и газов в условиях всестороннего сжатия и определяется частным от деления нормальной к поверхности силы на площадь этой поверхности

, (1)

где р — давление; N — нормальная сила, действующая на поверхность; F — площадь поверхности.

В применяемых до настоящего времени жидкостных манометрах мерой измеряемого давления является высота столба жидкости. Поэтому естественно применение единиц давления, определяемых высотой столба жидкости, т. е. основанных на единицах длины. В странах с метрически­ми системами мер получили распространение единицы давления милли­метр и метр водяного столба (мм вод. ст. и м вод. ст.) и миллиметр ртутного столба (мм рт. ст.).

Размеры этих единиц давления пересчитываются в единицы СИ на основании формулы

(2)

где Н — высота столба жидкости, м, р — плотность жидкости, кг/м3, g -ускорение свободного падения, м/с2.

Методы измерения давления во многом предопределяют как принци­пы действия, так и конструктивные особенности средств измерений. В этой связи в первую очередь следует остановиться на наиболее общих ме­тодологических вопросах техники измерения давления.

Читайте также:  Денсиметр для измерения плотности

Давление, исходя из самых общих позиций, может быть определено как путем его непосредственного измерения, так и посредством измере­ния другой физической величины, функционально связанной с измеряе­мым давлением.

В первом случае измеряемое давление воздействует непосредствен­но на чувствительный элемент прибора, который передает информацию о значении давления последующим звеньям измерительной цепи, преоб­разующим ее в требуемую форму. Этот метод определения давления яв­ляется методом прямых измерений, и получил наибольшее распростране­ние в технике измерения давления. На нем основаны принципы действия большинства манометров и измерительных преобразователей давления.

Во втором случае непосредственно измеряются другие физические величины или параметры, характеризующие физические свойства изме­ряемой среды, значения которых закономерно связаны с давлением (температура кипения жидкости, скорость распространения ультразву­ка, теплопроводность газа и т. д.). Этот метод является методом косвен­ных измерений давления и применяется, как правило, в тех случаях, когда прямой метод по тем или иным причинам неприменим, например, при измерении сверхнизкого давления (вакуумная техника) или при изме­рении высоких и сверхвысоких давлений [1].

Давление является производной физической величиной, определяе­мой тремя основными физическими величинами — массой, длиной и вре­менем. Конкретная реализация значения давления зависит от способа воспроизведения единицы давления. При измерении по формуле (1) давление определяется силой и площадью, а по формуле (2) — длиной, плотностью и ускорением. Методы определения давления, основанные на измерении указанных величин, являются абсолютными (фундамен­тальными) методами и применяются при воспроизведении единицы дав­ления эталонами грузопоршневого и жидкостного типа, а также позволя­ют, при необходимости, производить аттестацию образцовых средств измерений.

Относительный метод измерений, в отличие от абсолютного, основан на предварительном исследовании зависимости от давления физических свойств и параметров чувствительных элементов средств измерения дав­ления при методах прямых, измерений или других физических величин и свойств измеряемой среды — при методах косвенных измерений. На­пример, деформационные манометры перед их применением для измерения давления должны быть сначала отградуированы по образцовым средствам измерений соответствующей точности.

Помимо классификации по основным методам измерений и видам давления, средства измерений давления классифицируют по принципу действия, функциональному назначению, диапазону и точности измере­ний.

Наиболее существенный классификационный признак — принцип действия средства измерения давления, в соответствии с ним и построе­но дальнейшее изложение.

Современные средства измерений давления представляют собой измерительные системы, звенья которых имеют различное функциональное назначение. Обобщенные блок-схемы манометров и измерительных преобразователей давления приведены соответственно на рис. 1, а и б. Важнейшим звеном любого средства измерения давления является его чувствительный элемент (ЧЭ), который воспринимает измеряемое давление и преобразует его в первичный сигнал, поступающий в измеритель­ную цепь прибора. С помощью промежуточных преобразователей сигнал от ЧЭ преобразуется в показания манометра или регистрируется им, а в измерительных преобразователях (ИНД) — в унифицированный выходкой сигнал, поступающий в системы измерения, контроля, регулирования и управления. При этом промежуточные преобразователи и вто­ричные приборы во многих случаях унифицированы и могут приме­няться в сочетании с ЧЭ различных типов. Поэтому принципиальные особенности манометров и ИПД зависят, в первую очередь, от типа ЧЭ [1].

Рис. 1. Структурные блок-схемы:

а — манометра; б — измерительного преобразователя давле­ния; р — измеряемое давление; 1 — чувствительный эле­мент (первичный преобразователь) ; 2 — промежуточные преобразователи; 3 — показания; 4 — регистрация; 5 — выходной сигнал; → к системам: I — измерения и контроль; II — регистрации; III — регулирования; IV – управления

По принципу действия ЧЭ средства измерения давления можно разделить на следующие основные группы.

1. Средства измерения давления, основанные на прямых абсолютных методах: поршневые манометры и ИПД, в том числе и грузопоршневые манометры, манометры с нецилиндрическим неуплотненным поршнем, колокольные, кольцевые и жидкостные манометры.

В первых трех манометрах метод измерений реализуется уравнением (1), основанным на определении величины давления по отношению си­лы к площади; в жидкостных манометрах — уравнением (2) , основан­ным на уравновешивании давления столбом жидкости.

2. Средства измерения давления, основанные на прямых относитель­ных методах: деформационные манометры и ИПД, в том числе и с силовой компенсацией; полупроводниковые манометры и ИПД; манометры других типов, основанные на изменении физических свойств ЧЭ под дей­ствием давления.

3. Средства измерения давления, основанные на методах косвенных измерений: установки и приборы для определения давления по результа­там измерения других физических величин; установки и приборы для определения давления по результатам измерения параметров физических свойств измеряемой среды (термопарные и ионизационные вакууммет­ры, ультразвуковые манометры, вязкостные вакуумметры и др.).

Следует отметить, что абсолютные методы измерений, заложенные в поршневых и жидкостных манометрах, во многих случаях на практике не реализуются. Например, жидкостные манометры, исключая первичные эталоны, градуируются и поверяются не абсолютным, а относительным методом, путем их сличения с образцовыми средствами измерений соот­ветствующей точности.

Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования.

Выпускаемые в настоящее время измерительные преобразователи давления, основанные на методе прямого преобразования, разли­чаются как видом деформационного чувствительного элемента, так и способом преобразования его перемещения или развиваемого им усилия в сигнал измерительной информации. Для преобразования перемещения чувствительного элемента в сигнал измерительной ин­формации широко применяются индуктивные, дифференциально-трансформаторные, емкостные, тензорезисторные и другие преоб­разовательные элементы. Преобразование усилия, развиваемого чувствительным элементом, в сигнал измерительной информации осуществляется пьезоэлектрическими преобразовательными эле­ментами.

1.1.4 Деформационные измерительные преобразователи давления, основанные на методе прямого преобразования

Источник