Меню

Методы измерения биопотенциалов микроэлектроды



Измерение биопотенциалов. Понятие о микроэлектродной технике

Для измерения потенциала покоя один электрод обязательно надо ввести внутрь клетки, в цитоплазму. Однако, металлические электроды повреждают клетку; кроме того, на границе металла с клеточным содержимым возникает дополнительная разность потенциалов, искажающая результаты измерений. Поэтому получение достоверных данных ранее было связано со значительными трудностями; некоторые крупные физиологи даже вообще сомневались в существовании ПП. Эти трудности были преодолены появлением микроэлектродов .

Микроэлектрод представляет собой тонкую стеклянную трубочку с оттянутым кончиком; диаметр этого кончика порядка одного микрометра (0,001 мм). Для того, чтобы электрод проводил ток, его заполняют раствором KCl. В цитоплазме много ионов калия и хлора, поэтому внедрение кончика электрода в клетку не меняет заметно ионный состав цитоплазмы;

механическое повреждение мембраны таким тонким электродом тоже незначительно. Поэтому с помощью микроэлектродной техники можно получать достаточно точные результаты.

Ввиду малости биопотенциалов электрод подключают к усилителю;усиленную разность потенциалов подают на электронный осциллограф или самописец.

Для измерения и записи потенциалов действия можно использовать электроды, наложенные на поверхность нервного или мышечного волокна (тоже с усилителем), но более точные и надёжные результаты всё-таки получаются с использованием микроэлектродов.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Источник

Биопотенциалы. Микроэлектродный метод регистрации биопотенциалов. Формула Нернста для расчёта биопотенциалов (её вывод), уравнение Гольдмана.

Одна из важнейших функций биологической мембраны — ге­нерация и передача биопотенциалов. В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов:

1) окислительно-восстановительные потенциалы — вслед­ствие переноса электронов от одних молекул к другим;

2) мембранные — вследствие градиента концентрации ионов и переноса ионов через мембрану.

Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком.

Металлический электрод такой толщины пластичен и не может проколоть клеточную мембрану, кроме того он поляризует­ся. Для исключения поляризации электрода используются не­поляризующиеся электроды, например серебряная проволока, покрытая солью AgCl. В раствор КС1 или NaCI (желатинизированный агар-агаром), заполняющий микроэлектрод. Второй электрод — электрод сравнения — располагается в ра­створе у наружной поверхности клетки. Регистри­рующее устройство, содержащее усилитель постоянного тока, измеряет мембранный потенциал:

Микроэлектродный метод дал возможность измерить биопо­тенциалы не только на гигантском аксоне кальмара, но и на клет­ках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала

Уравнение Гольдмана:

Биопотенциал покоя, его физическая природа. Уравнение Нернста-Планка для состояния покоя. Роль градиентов концентрации и электрического потенциала при формировании потенциала покоя.

Потенциал покоя — стационарная разность электрических по­тенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии. Потенциал покоя определяется разной концентрацией ионов по Разные стороны мембраны и диффузией ионов через мембрану. Если концентрация какого-либо иона внутри клетки С отлич­ив от концентрации этого иона снаружи С и мембрана проница­ла для этого иона, возникает поток заряженных частиц через Мембрану, вследствие чего нарушается электрическая нейтраль­ность системы, образуется разность потенциалов внутри и снаружи клетки ФИм=ФИвн-Финар, которая будет препятствовать дальней­шему перемещению ионов через мембрану. При установлении равновесия выравниваются значения электрохимических потен­циалов по разные стороны мембраны:

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала:

Переписав уравнение Гольдмана в виде:

Уравнение Нернстастало:

С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса: где m — отношение количества ионов натрия к количеству ионов калия, перекачиваемых ионными насосами через мембрану. Чаще всего K+-Na+-АТФаза работает в режиме, когда m = 3/2, м всегда больше 1.

Читайте также:  Измерение расстояния по поперечному масштабу

Коэффициент m > 1 усиливает вклад градиента концентра­ции калия в создание мембранного потенциала, поэтому мемб­ранный потенциал, рассчитанный по Томасу, больше по абсо­лютной величине, чем мембранный потенциал, рассчитанный по Гольдману, и дает совпадение с экспериментальными значе­ниями для мелких клеток.

Источник

Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов)

Микроэлектрод – стеклянная микропипетка, заполненная раствором электролита. Диаметр кончика менее 0,5 мкм позволяет ввести электрод внутрь клетки, не нарушая ее функции. Второй электрод (электрод сравнения) – в питающий раствор с исследуемой тканью. Потенциал внеклеточной среды принимается равным нулю. Электроды соединяются с согласующим устройством, потом с усилителем постоянного тока. В качестве регистратора используется осциллограф.

В момент прокола мембраны клетки микроэлектродом на экране осциллографа происходит резкое смещение нулевого уровня книзу (рис 3). Наблюдается поляризация мембраны — внутренняя сторона мембраны заряжена отрицательно относительно внешней. Это же касается заряда внутреннего содержимого клетки относительно внешней среды. Перемещение кончика микроэлектрода внутри клетки не приводит к изменению измеряемой разности потенциалов, если электрод не повредил клетку. Зарегистрированная разность потенциалов получила название потенциала покоя (ПП) или мембранного потенциала покоя (МПП).

Обычно величина МПП колеблется от – 70 до – 95 мВ.

Смещение мембранного потенциала кверху, т.е. уменьшение значения мембранного потенциала по модулю (уменьшение поляризации) называется уменьшением мембранного потенциала или деполяризацией; смещение книзу, т.е. увеличение по модулю значения мембранного потенциала (увеличение поляризации), называется увеличением мембранного потенциала или гиперполяризацией(рис. 4).

Потенциал действия.

При неизменном функциональном состоянии клетки величина мембранного потенциала не изменяется. Поддержание постоянной его величины обеспечивается нормальным протеканием клеточного метаболизма.

Рис. 3. Внутриклеточная регистрация мембранного потенциала.

А – схема установки для регистрации; Б – момент введения микроэлектрода в клетку. 1 – стеклянный микроэлектрод; 2 – электрод сравнения; 3 – усилитель; 4 – регистратор.

При нанесении на клетку, в которой находится микроэлектрод, допороговых стимулов, можно зарегистрировать уменьшение мембранного потенциала (деполяризацию), которое обратимо (быстро проходит) и зависит от силы стимула, но до определенного уровня.

Ответы клетки при действии на нее допороговых раздражений могут суммироваться.

При деполяризации до определенного уровня (обычно – это смещение мембранного потенциала на 20-30% от величины МПП), называемого критический уровень деполяризации (КУД), возникает резкое колебание мембранного потенциала (рис 5), получившее название потенциала действия (ПД) или спайка или пик – потенциала. И как бы мы дальше не увеличивали силу раздражения, амплитуда потенциала действия уже не изменится (закон “все или ничего”).

Рис. 4. Изменения поляризации (потенциала) мембраны.

Все изменения мембранного потенциала до КУД отображают местный процесс возбуждения, нераспространяющееся возбуждение или локальный ответ.

В ПД различают пик и следовые потенциалы. Восходящая часть пика – деполяризация, нисходящая – реполяризация.

Рис. 5. ПД и изменения возбудимости во время ПД.

Овершут – перезарядка мембраны или перескок – основная причина распространения возбуждения.

Именно эти овершуты, перескоки ПД и регистрировал в своих экспериментах Эмиль Дюбуа-Реймон. ПД – это всегда распространяющееся возбуждение.

Следовые потенциалы: отрицательный следовый потенциал (следовая деполяризация); положительный следовый потенциал (следовая гиперполяризация).

Амплитуда потенциала действия: нервные клетки 110 –100 мВ; скелетные и сердечные мышцы 110 – 120 мВ.

Читайте также:  Субъективные единицы измерения это

Продолжительность ПД нервных клеток 1 –2 мс.

Фазовые изменения возбудимостипри генерации ПД (рис. 5).

Мерило возбудимости – порог раздражения. При местном, локальном, возбуждении возбудимость увеличивается. Т.е. когда мембранный потенциал достигает КУД, возбудимость повышена.

ПД сопровождается многофазными изменениями возбудимости:

Период абсолютной рефрактерности (АРП) соответствует фазе деполяризации потенциала действия, пику и началу фазы реполяризации, возбудимость снижена вплоть до полного отсутствия во время пика.

Период относительной рефрактерности соответствует оставшейся части фазы реполяризации, возбудимость постепенно восстанавливается к исходному уровню.

Супернормальный период соответствует фазе следовой деполяризации потенциала действия (отрицательный следовый потенциал), возбудимость повышена.

Субнормальный период соответствует фазе следовой гиперполяризации потенциала действия (положительный следовый потенциал), возбудимость снижена.

Если потенциал покоя присущ всем живым клеткам без исключения, то потенциал действия генерируется только возбудимыми клетками, является электрофизиологическим показателем возникновения и распространения процесса возбуждения по мембранам нервных и мышечных клеток.

Источник

Мембранный потенциал. Определение. Величина. Микроэлектродный метод измерения МП.

Одна из важнейших функций биологической мембраны — генерация и передача биопотенциалов. Это явление лежит в основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной системы, регуляции мышечного сокращения, рецепции.

Мембранный потенциал — разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны живой клетки в состоянии физиологического покоя. Внешняя поверхность клетки несет положительный заряд, а внутренняя сторона мембраны (цитоплазма) – отрицательный. ∆φ= φвн- φнар

Величина МП=-60-90 мВ. Мембранные потенциалы подразделяются на потенциалы покоя и потенциалы действия.

Потенциал покояприсущ как невозбудимым клеткам (например, эритроциту), так и возбудимым (аксоны, кардиомиоциты). Потенциалы действия существуют только в возбудимых клетках и тканях.

Мембранный потенциал покоя образуется за счёт двух процессов: 1. Работа калий-натриевого насоса мембраны. Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия: 1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ). Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше «плюсиков» (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности. Эти предпосылки — неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже. 2. Утечка ионов калия из клетки. Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Вывод: Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это — разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выровнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электро отрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.

Микроэлектродный метод измерения биопотенциалов. Микроэлектроды бывают металлическими и стеклянными. Металлический микроэлектрод представляет собой стержень из специальной высокоомной изолированной проволоки с регистрирующим кончиком. Стеклянный микроэлектрод диаметром около 1 мм изготавливается из специального стекла — пирекса, с тонким незапаянным кончиком, заполненным раствором электролита. Схема регистрации мембранного потенциала. Микроэлектроды подводят к изучаемым отделам головного мозга, отвечающих за память у животных, и наблюдают графическую запись импульсной активности нейронов.

Читайте также:  Как измерить солнечную активность

Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне кальмара, но и на клетках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

В медицине на исследование электрических полей, созданных биопотенциалами органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие. Практикуется и лечебное воздействие на ткани и органы внешними электрическими импульсами при электростимуляции.

II.

Регистрация кривой порога слышимости

Изучение аппарата для измерения артериального давления

Снятие электрокардиограммы и построение вектора ЭДС сердца

Источник

10. Биопотенциалы. Микроэлектродный метод регистрации биопотенциалов. Формула Нернста для расчёта биопотенциалов (её вывод), уравнение Гольдмана.

Одна из важнейших функций биологической мембраны — ге­нерация и передача биопотенциалов. В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов:

1) окислительно-восстановительные потенциалы — вслед­ствие переноса электронов от одних молекул к другим;

2) мембранные — вследствие градиента концентрации ионов и переноса ионов через мембрану.

Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком.

Металлический электрод такой толщины пластичен и не может проколоть клеточную мембрану, кроме того он поляризует­ся. Для исключения поляризации электрода используются не­поляризующиеся электроды, например серебряная проволока, покрытая солью AgCl. В раствор КС1 или NaCI (желатинизированный агар-агаром), заполняющий микроэлектрод. Второй электрод — электрод сравнения — располагается в ра­створе у наружной поверхности клетки. Регистри­рующее устройство, содержащее усилитель постоянного тока, измеряет мембранный потенциал:

Микроэлектродный метод дал возможность измерить биопо­тенциалы не только на гигантском аксоне кальмара, но и на клет­ках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала

11. Биопотенциал покоя, его физическая природа. Уравнение Нернста-Планка для состояния покоя. Роль градиентов концентрации и электрического потенциала при формировании потенциала покоя.

Потенциал покоя — стационарная разность электрических по­тенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии. Потенциал покоя определяется разной концентрацией ионов по Разные стороны мембраны и диффузией ионов через мембрану. Если концентрация какого-либо иона внутри клетки С отлич­ив от концентрации этого иона снаружи С и мембрана проница­ла для этого иона, возникает поток заряженных частиц через Мембрану, вследствие чего нарушается электрическая нейтраль­ность системы, образуется разность потенциалов внутри и снаружи клетки ФИм=ФИвн-Финар, которая будет препятствовать дальней­шему перемещению ионов через мембрану. При установлении равновесия выравниваются значения электрохимических потен­циалов по разные стороны мембраны:

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала:

Переписав уравнение Гольдмана в виде:

уравнение Нернста стало:

С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса: где m — отношение количества ионов натрия к количеству ионов калия, перекачиваемых ионными насосами через мембрану. Чаще всего K+-Na+-АТФаза работает в режиме, когда m = 3/2, м всегда больше 1.

Коэффициент m > 1 усиливает вклад градиента концентра­ции калия в создание мембранного потенциала, поэтому мемб­ранный потенциал, рассчитанный по Томасу, больше по абсо­лютной величине, чем мембранный потенциал, рассчитанный по Гольдману, и дает совпадение с экспериментальными значе­ниями для мелких клеток.

Источник