Меню

Методы измерения кинетической энергии



Формула кинетической энергии в физике

Одним из важнейших понятий в физике является энергия, то есть способность тела совершать ту или иную работу. Механическая энергия подразделяется на кинетическую и потенциальную. Рассмотрим первый ее вид.

Кинетическая энергия – понятие и определение

Кинетическая энергия – это способность движущегося тела совершать определенную работу.

Например, движущийся автомобиль способен снести находящееся перед ним препятствие, а падающий камень – оставить вмятину на металлической пластинке.

Кинетическая энергия зависит от скорости движения и массы тела. Она описывается формулой:

Единицей измерения кинетической энергии является Джоуль (Дж).

Проведя простые преобразования, легко вывести формулы для вычисления массы тела и скорости движения:

Из основной формулы видно: во сколько раз изменяется масса тела, во столько раз изменяется и величина кинетической энергии. Например, если масса будет уменьшена или увеличена в 5 раз, то и величина кинетической энергии станет соответственно меньше или больше в 5 раз.

При увеличении скорости кинетическая энергия увеличивается в квадратичной зависимости. Допустим, скорость движения тела стала в 6 раз больше. Соответственно его кинетическая энергия возросла в 36 раз.

Формула кинетической энергии тела справедлива только для скоростей значительно меньших, чем скорость света. Если же скорость движения приближается к 300 000 км/с, то тут начинает действовать теория относительности, созданная Альбертом Эйнштейном.

Кинетическая энергия зависит от особенностей рассмотрения системы. Если тело принимают как макроскопический объект, то оно будет обладать внутренней энергией. В этом случае кинетическая энергия возникнет только в момент его движения.

Это же тело можно рассматривать и с микроскопической точки зрения. Тепловое движение атомов и молекул обуславливает внутреннюю энергию тела. В то же время средняя кинетическая энергия этого движения пропорциональна абсолютной температуре тела. Коэффициент этой пропорциональной зависимости называется постоянной Больцмана.

Кинетическая энергия атомов и молекул при рассмотрении тела на микроскопическом уровне описывается формулой:

\(E_k=\frac32kT\)

где \(k\) – это постоянная Больцмана.

Теорема об изменении кинетической энергии

Рассмотрим наиболее простой пример движения, при котором скорость движения и сила, действующая на тело имеют одинаковое направление. Тело совершает перемещение (S), так как сила (F) совершает работу (A). Также она изменяет и скорость движения, придавая телу некоторое ускорение. Это свидетельствует о наличии связи между работой силы и изменением скорости движения.

В данном случае работа силы будет описываться формулой:

Запишем второй закон Ньютона в стандартном виде:

При условии, что движение является равноускоренным (сила не зависит от координат и времени), работу можно записать так:

Вспомним формулу из курса кинематики, связывающую перемещение, ускорение, начальную и конечную скорости движения тела:

Подставляем ее в формулу работы:

Полученное равенство показывает, что разность между кинетической энергией в конечной и начальный момент времени равна работе силы. Это позволяет сформулировать теорему об изменении кинетической энергии.

Изменение кинетической энергии тела равна равнодействующей всех сил или работе силы:

Таким образом, сила будет совершать отрицательную работу, если она направлена в сторону, противоположную движению тела. В этом случае начальная кинетическая энергия будет больше, чем конечная:

Так как сила имеет противоположное скорости направление, то модуль скорости будет уменьшаться, что и становится причиной уменьшения величины кинетической энергии.

Если же сила будет направлена в сторону движения, то кинетическая энергия будет возрастать:

Фактически теорему об изменении кинетической энергии можно рассматривать как иную формулировку второго закона Ньютона. Поэтому ее использование возможно в различных случаях, например, при рассмотрении действия силы трения, тяжести или упругости.

Примеры решения задач, как найти кинетическую энергию

Рассмотрим примеры решения задач на нахождение кинетической энергии.

Задача 1

Тело, имеющее массу 2 кг движется поступательно со скоростью 36 км/ч. Найдите, какой кинетической энергией оно обладает.

Решение

Прежде чем приступить к вычислению необходимо перевести скорость тела в единицы СИ:

Подставим известные значения в формулу кинетической энергии и выполним расчет:

Ответ: кинетическая энергия тела составляет 100 Джоулей.

Задача 2

Груз массой 0,2 кг прикреплен к пружине, которая закреплена горизонтально. Максимальная скорость колебания 3 м/с. Вычислить максимальную кинетическую энергию тела.

Решение

Воспользуемся выражением определения кинетической энергии:

Ответ: максимальная кинетическая энергия пружины и груза составляет 0,9 Дж.

Задача 3

Найдите среднюю кинетическую энергию поступательного движения молекулы водорода при температуре Т = 280 К.

Решение

Для решения задачи воспользуемся уравнением, связывающим температуру и энергию:

где k – это постоянная Больцмана

Ответ: средняя кинетическая скорость молекулы водорода составляет \(579,6\times10^<-23>\;Дж.\)

Источник

Кинетическая и потенциальная энергия — определение, теоремы и формулы расчетов

Концепция и классификация

Ещё в древности энергию определяли как свойство или способность, которые тела и вещества должны производить вокруг себя и которые во время преобразований обмениваются через два механизма: в форме работы или тепла. Правда, тогда еще не знали, что таким образом выполняется закон сохранения энергии. Но кроме физических изменений, проявляющихся, например, в подъёме объекта, его транспортировке, деформации или нагревании, энергия также присутствует в химических изменениях, таких как сжигание куска дерева или разложение воды электрическим током.

Читайте также:  Какие измерения надо произвести чтобы оценить размеры молекул оливкового масла

Энергия — это способность тела работать, а также сила, которая выполняет работу. Она может быть представлена в виде различных переходных форм:

  • тепловой;
  • механической;
  • химической;
  • электрической;
  • ядерной.

В физике самая важная форма называется механической энергией. Это сумма и определение потенциальной и кинетической энергии, формула которой: E = Ek + Wp.

Энергия движения

Кинетическая энергия тела — это та, которой тело обладает благодаря своему движению. Её определяют как силу, необходимую для ускорения тела определённой массы от покоя до максимальной указанной скорости. Как только достигается ускорение, тело сохраняет энергию, если скорость не изменяется. Чтобы тело вернулось в состояние покоя, необходима отрицательная работа той же величины.

Единица измерения кинетической энергии — джоуль. Обычно она обозначается буквой E c или E k. Расчёт мощности измеряется по-разному. Для того чтобы найти её количество можно использовать онлайн-калькулятор.

История и определение

Прилагательное «кинетический» в названии произошло от древнегреческого слова кίνησις kinēsis, что означает «движение».

Идею связи классической механики и кинематической энергии впервые выдвинули Готфрид Вильгельм Лейбниц и Даниэль Бернулли. Учёный Грейвсанд из Нидерландов предоставил экспериментальное подтверждение этой связи.

Но первые теоретические выкладки этих идей приписаны Гаспар-Гюстав Кориолису, который в 1829 году опубликовал статью, где была изложена математика этого процесса. Сам термин появился в 1849 году благодаря Уильяму Томсону, более известному как лорд Кельвин.

Теорема о кинетической энергии гласит: изменение кинетической силы тела равно работе равнодействующей всех сил, действующих на тело. Эта теорема справедлива независимо от того, какие силы действуют на тело.

Часто различают кинетическую силу поступательного и вращательного движения. Как и любая физическая величина, которая является функцией скорости, она не только зависит от внутренней природы этого объекта, но также зависит от отношений между объектом и наблюдателем (в физике наблюдатель формально определяется классом определённая система координат, называемая инерциальной системой отсчёта).

Эта энергия деградирует и сохраняется в каждой трансформации, теряя способность совершать новые трансформации, но она не может быть создана или разрушена, только трансформирована, поэтому её сумма во вселенной всегда постоянна.

Кинематика системы частиц

Для частицы или для твёрдого тела, которое не вращается, кинетическая энергия падает до нуля, когда тело останавливается. Однако для систем, которые содержат много частиц с независимыми движениями, это не совсем верно.

Для твёрдого тела, которое вращается, полная кинетическая сила может быть разбита на две суммы: энергия перемещения, связанная со смещением центра масс тела в пространстве, и вращения (с вращательным движением с определённой угловой скоростью).

Потенциальная энергия

Этот термин был введён в XIX веке учёным Уильямом Ренкином и связан с механической энергией, которая зависит от расположения тела в силовом поле (гравитационное, электростатическое и т. д. ) или с наличием силового поля внутри тела.

Теорема о потенциальной энергии утверждает, что она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Независимо от силы, её порождающей, потенциальная энергия, которой обладает физическая система, хранится благодаря своему положению и / или конфигурации, в чём и заключается её различие с кинетической энергией.

Значение потенциала всегда зависит от нахождения или конфигурации, выбранной для её измерения, поэтому иногда говорят, что физически имеет значение только его изменение отношений между двумя конфигурациями.

Потенциальная энергия присутствует не только в классической физике, но также в релятивистской и квантовой физике. Эта концепция также была распространена на физику элементарных частиц.

Смысл потенциальной силы связан с работой, выполняемой силами физической системы для перемещения её из одного состояния в другое. А её функция будет существенно зависеть от типа силового поля или взаимодействия, действующего на систему.

Это относится, например, к атомной физике при получении электронных состояний атома или к молекулярной физике для получения таких состояний молекулы, как:

  • электронных;
  • вибрационных;
  • вибрационно-вращательных;
  • вращательных.

В других более общих формулировках физики потенциальная функция также играет важную роль. Среди них лагранжева и гамильтонова формулировки механики.

Гравитационная сила

Потенциальной гравитацией обладают тела в силу того, что они имеют массу и находятся на определённом взаимном расстоянии. Среди огромных масс действуют силы притяжения. Применительно, например, к планетарному движению, основная масса солнечной системы состоит из массы Солнца, которая создаёт гравитационное силовое поле, воздействующее на малые массы планет. В свою очередь, каждая планета создаёт такое же поле, которое воздействует на второстепенные тела, находящиеся на её поверхности. Зависимость силы тяжести от высоты можно изобразить на графике. При увеличении массы тела линейно увеличивается и она.

Читайте также:  Математика измерение сыпучих веществ старшая группа

Энергия упругой деформации

Эластичность — это свойство определённых материалов, благодаря которому, будучи деформированными, растянутыми или отделёнными от своего исходного положения, они могут восстановить своё первоначальное состояние или равновесие. Восстановительными силами, ответственными за восстановление, являются силы упругости, как в случае пружин, резиновых полос или струн музыкальных инструментов.

Многие древние военные машины использовали эти силы для запуска объектов на расстоянии, таких как дуга, которая стреляет стрелой, арбалет или катапульта. Вибрации или колебания материальных объектов, вызванные упругими силами, являются источником звуковых волн. Силы восстановления, когда объект восстанавливает свою первоначальную форму практически без какого-либо демпфирования или деформации, являются консервативными, и может быть получена упругая сила.

Пружина является примером упругого объекта, который точно восстанавливает первоначальную форму: при растяжении он создаёт упругую силу, стремящуюся вернуть его к первоначальной длине. Экспериментально подтверждено, что эта восстановительная сила пропорциональна растянутой длине пружины. Способ выразить эту пропорциональность между силой и растянутой суммой — через закон Гука.

Коэффициент пропорциональности при этой деформации зависит от типа материала и рассматриваемой геометрической формы. Для твёрдых тел сила упругости обычно описывается в терминах величины деформации, вызванной растягивающей силой, возникающей в результате этого растяжения, называемого упругостью или модулем Юнга. Для жидкостей и газов это выражается изменением давления, способного вызвать изменение объёма, и называется модулем сжимаемости.

Одним из свойств упругости твёрдого тела или жидкости при растяжении или деформации является то, что растяжение или деформация пропорциональны приложенному усилию. То есть для создания двойного растяжения потребуется двойная сила. Эта линейная зависимость смещения от приложенной силы известна как закон Гука.

Прикладное значение

Потенциальная электростатическая энергия может храниться с помощью конденсаторов. Конденсатор — это устройство, которое накапливает её внутри. Чтобы сохранить электрический заряд, он использует две проводящие поверхности, как правило, в форме листов или пластин, разделённых диэлектрическим материалом (изолятором). Эти платы являются электрически заряженными при подключении к источнику питания.

Две пластины имеют одинаковую величину, но с разными знаками, причём величина нагрузки пропорциональна приложенной разности потенциалов. Константа пропорциональности между зарядом, приобретённым конденсатором, и разностью потенциалов, достигнутой между двумя пластинами, называется ёмкостью конденсатора:

Области применения конденсаторов многочисленны в области электроники, и, следовательно, они также предназначены для бытовых приборов. В современных технологических приложениях их используют:

  • в компьютерах;
  • в средствах связи;
  • в видео, аудиоплеерах и т. д.

В этих применениях современной технологии конденсаторы способны накапливать электростатическую энергию в течение коротких периодов времени и с не слишком высокими значениями.

Источник

Кинетическая и потенциальная энергии

Энергия — важнейшее понятие в механике. Что такое энергия. Существует множество определений, и вот одно из них.

Что такое энергия?

Энергия — это способность тела совершать работу.

Кинетическая энергия

Рассмотрим тело, которое двигалось под действием каких-то сил изменило свою скорость с v 1 → до v 2 → . В этом случае силы, действующие на тело, совершили определенную работу A .

Работа всех сил, действующих на тело, равна работе равнодействующей силы.

F р → = F 1 → + F 2 →

A = F 1 · s · cos α 1 + F 2 · s · cos α 2 = F р cos α .

Установим связь между изменением скорости тела и работой, совершенной действующими на тело силами. Для простоты будем считать, что на тело действует одна сила F → , направленная вдоль прямой линии. Под действием этой силы тело движется равноускоренно и прямолинейно. В этом случае векторы F → , v → , a → , s → совпадают по направлению и их можно рассматривать как алгебраические величины.

Работа силы F → равна A = F s . Перемещение тела выражается формулой s = v 2 2 — v 1 2 2 a . Отсюда:

A = F s = F · v 2 2 — v 1 2 2 a = m a · v 2 2 — v 1 2 2 a

A = m v 2 2 — m v 1 2 2 = m v 2 2 2 — m v 1 2 2 .

Как видим, работа, совершенная силой, пропорционально изменению квадрата скорости тела.

Определение. Кинетическая энергия

Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости.

Кинетическая энергия — энергия движения тела. При нулевой скорости она равна нулю.

Теорема о кинетической энергии

Вновь обратимся к рассмотренному примеру и сформулируем теорему о кинетической энергии тела.

Читайте также:  Единицы измерения давления таблица соотношения

Теорема о кинетической энергии

Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы.

A = E K 2 — E K 1 .

Таким образом, кинетическая энергия тела массы m , движущегося со скоростью v → , равна работе, которую сила должна совершить, чтобы разогнать тело до этой скорости.

A = m v 2 2 = E K .

Чтобы остановить тело, нужно совершить работу

A = — m v 2 2 =- E K

Потенциальная энергия

Кинетическая энергия — это энергия движения. Наряду с кинетической энергией есть еще потенциальная энергия, то есть энергия взаимодействия тел, которая зависит от их положения.

Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциальная энергия. Когда тело падает вниз под действием силы тяжести, эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.

Вообще о потенциальной энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными.

Примеры консервативных сил: сила тяжести, сила упругости.

Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу.

Рассмотрим пример, когда шар переместился из точки с высотой h 1 в точку с высотой h 2 .

При этом сила тяжести совершила работу, равную

A = — m g ( h 2 — h 1 ) = — ( m g h 2 — m g h 1 ) .

Эта работа равна изменению величины m g h , взятому с противоположным знаком.

Величина Е П = m g h — потенциальна энергия в поле силы тяжести. На нулевом уровне (на земле) потенциальная энергия тела равна нулю.

Определение. Потенциальная энергия

Потенциальная энергия — часть полной механической энергии системы, находящейся в поле консервативных сил. Потенциальная энергия зависит от положения точек, составляющих систему.

Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины и т.д.

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

A = — ( E П 2 — E П 1 ) .

Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.

При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.

Здесь G — гравитационная постоянная, M — масса Земли.

Потенциальная энергия пружины

Представим, что в первом случае мы взяли пружину и удлинили ее на величину x . Во втором случае мы сначала удлинили пружину на 2 x , а затем уменьшили на x . В обоих случаях пружина оказалась растянута на x , но это было сделано разными способами.

При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна

A у п р = — A = — k x 2 2 .

Величина E у п р = k x 2 2 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.

Источник

Кинетические методы измерения

Кинетические методы измерения – это методы, когда изменения оптической плотности регистрируются во времени и измеряется скорость изменения, которая пропорциональна либо концентрации исследуемого вещества, либо активности этого вещества (например, ферментов). Расчет производится либо по фактору, либо по стандарту. Активность ферментов обычно вычисляется по фактору:

1.Измерение «по конечной точке» (одноточечная кинетика)Он заключается в измерении оптической плотности на линейном участке кинетической кривой по истечении определенного четко фиксированного отрезка времени от начала реакции (внесения исследуемой пробы в реакционную смесь). Такой способ называют еще одноточечной кинетикой. Как правило, по истечении указанного отрезка времени в реакционную смесь добавляют реагент, останавливающий ферментативную реакцию, например щелочь или кислоту. Отсюда и название метода – «по конечной точке», т. е. с остановкой реакции

2.Расчет с калибровкой по стандарту:

В случае калибровки по стандарту, расчет происходит по той же самой формуле, только здесь фактор не является параметром, заданным в методике на реагенты, а вычисляется по формуле:

3.Измерение многоточечное, или кинетическое. При этом способе оптическую плотностьна линейном участке кинетической кривой определяют 3–5 и болеераз через четко фиксированные равные интервалы времени. Многоточечная кинетика используется только для биохимических анализаторов, так как в ручном варианте это достаточнотрудоемко. На этом способе основано, например, определениеактивности АЛТ и АСТ.

Дата добавления: 2016-01-03 ; просмотров: 3717 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник