Меню

Методы измерения при охлаждении



Методы и приборы для измерения температуры

Что такое температура

Измерение температуры — предмет теоретической и экспериментальной дисциплины — термометрии, часть которой, охватывающая температуры свыше 500° С, называется пирометрией.

Наиболее общее строгое определение понятия температуры, следующее из второго начала термодинамики, формулируется выражением:

где Т — абсолютная температура изолированной термодинамической системы, d Q — приращение тепла, сообщаемого этой системе, и d S — приращение энтропии этой системы.

Приведенное выражение интерпретируется следующим образом: температура есть мера приращения тепла, сообщенного изолированной термодинамической системе и соответствующего приращению энтропии системы, происходящему при этом, или, иначе говоря, возрастанию неупорядоченности ее состояния.

В статистической механике, описывающей фазы системы с учетом микропроцессов, протекающих в макросистемах, понятие температуры определяется через выражение распределения частиц молекулярной системы между рядом невырожденных энергетических уровней (распределения Гиббса).

Такое определение (согласующееся с предыдущим) подчеркивает вероятностный, статистический аспект понятия температуры как основного параметра микрофизической формы передачи энергии от одного тела (или системы) к другому, т. е. хаотического теплового движения.

Малая наглядность строгих определений понятия температуры, справедливых к тому же только для термодинамически равновесных систем, привела к широкому распространению «утилитарного» определения, исходящего из существа явления передачи энергии: температура — это тепловое состояние тела или системы, характеризующееся его способностью обмениваться теплом с другим телом (или системой).

Эта формулировка применима и к термодинамически неравновесным системам, и (с оговорками) к психофизиологическому понятию «сенсорной» температуры, непосредственно воспринимаемой человеком с помощью органов термического осязания.

«Сенсорная» температуpa субъективно оценивается человеком непосредственно, но лишь качественно и в относительно узком интервале, физическая же температуpa измеряется количественно и объективно, с помощью измерит, приборов, но только косвенно — по значению какой-либо физической величины, зависящей от измеряемой температуры.

Поэтому в последнем случае устанавливают какое-либо опорное (реперное) состояние выбранной для этой цели температурозависимой физической величины и приписывают ему некоторое определенное числовое значение температуры с тем, чтобы любое изменение состояния выбранной физической величины относительно опорного могло быть выражено в единицах температуры.

Совокупность значений температуры, соответствующих ряду последовательных изменений состояния (т. е. ряду значений) выбранной температурозависимой величины, образует температурную шкалу. Наиболее распространенные температурные шкалы: Цельсия, Фаренгейта, Реомюра, Кельвина и Ранкина.

Температурные шкалы Кельвина и Цельсия

Основной единицей измерения термодинамической температуры и одновременно одной из основных единиц Международной системы единиц (СИ) является градус Кельвина.

Размер (температурный промежуток) 1 градуса Кельвина определяется тем, что значение термодинамической температуры тройной точки воды установлено равным в точности 273,16°К.

Эта температура, при которой вода равновесно сосуществует в трех фазах: твердой, жидкой и газообразной, принята в качестве основного репера вследствие ее высокой воспроизводимости, на целый порядок лучшей, чем воспроизводимость температур замерзания и кипения воды.

Градус Цельсия, в единицах которого также может быть выражена термодинамическая температура, по своему температурному промежутку в точности равен градусу Кельвина, но числовое значение любой температуры в градусах Цельсия на 273,15 градусов больше значения той же температуры в градусах Кельвина.

Размер 1 градуса Кельвина (или 1 градуса Цельсия), определенный из числового значения температуры тройной точки воды, при современных точностях измерения не отличается от его размера, определенного (что было принято ранее) как сотая доля температурного промежутка между точками замерзания и кипения воды.

Классификация методов и приборов для измерения температуры

Измерение температуры тела или среды может быть осуществлено двумя принципиально различными косвенными путями.

Первый путь ведет к измерению значений одного из температурозависимых свойств или параметров состояния непосредственно самого тела или среды, второй — к измерению значений температурозависимых свойств или параметров состояния вспомогательного тела, приведенного (прямо или косвенно) в состояние теплового равновесия с телом или средой, температуpa которых измеряется.

Вспомогательное тело, служащее для этих целей и являющееся датчиком комплектного прибора для измерения температуры, называется термометрическим (пирометрическим) зондом, или термоприемником. Поэтому все методы и приборы для измерения температуры разделяются на две принципиально различные группы: беззондовые и зондовые.

Термоприемник или какое-либо вспомогательное устройство прибора может быть приведено в прямое механическое соприкосновение с телом или средой, температура которых измеряется, или же между ними может осуществляться лишь «оптический» контакт.

В зависимости от этого все методы и приборы для измерения температуры делятся на контактные и бесконтактные. Наибольшее практическое значение имеют зондовые контактные и бесконтактные методы и приборы.

Погрешности при измерении температуры

Всем контактным, в первую очередь зондовым, методам измерения температуры, в отличие от других методов, свойственны т. н. тепловые или термические методические погрешности, обусловленные тем, что комплектный зондовый термометр (или пирометр) измеряет значение температуры только чувствительной части термоприемника, усредненное по поверхности или объему этой части.

Между тем эта температура, как правило, не совпадает с измеряемой потому, что термоприемник неизбежно искажает температурное поле, в которое его вносят. При измерении установившейся постоянной температуры тела или среды между ним и термоприемником устанавливается определенный режим теплообмена.

Постоянная разность температур термоприемника и измеряемой температуры тела или среды характеризует статическую термическую погрешность при измерении температуры.

Если измеряемая температуpa изменяется, то термическая погрешность оказывается функцией времени. Такую динамическую погрешность можно рассматривать как состоящую из постоянной части, эквивалентной статической погрешности, и переменной части.

Последняя возникает потому, что при всяком изменении теплообмена между телом или средой, температура которых измеряется, новый режим теплообмена устанавливается не сразу. Обусловленное отставанием искажение показаний термометра или пирометра, являющееся функцией времени, характеризуется тепловой инерцией термоприемника.

Тепловые погрешности и тепловая инерция термоприемника зависят от тех же факторов, что и теплообмен между телом или средой и термоприемником: от температур термоприемника и тела или среды, от их размеров, состава (а значит и свойств) и состояния, от конструкции, размеров, геометрической формы, состояния поверхности и свойств материалов термоприемника и окружающих его тел, от их взаиморасположения, от того, по какому закону изменяются во времени измеряемая температура тела или среды.

Читайте также:  Показания приборов для измерения давления жидкостных приборов

Тепловые методические погрешности при измерении температуры, как правило, в несколько раз превосходят инструментальные погрешности термометров и пирометров. Их снижение достигается применением рациональных методик измерения температуры и конструкций термоприемников и целесообразным монтажом последних на местах применения.

Улучшение теплообмена термоприемника и среды или тела, температура которых измеряется, достигается форсированием полезных и подавлением вредных факторов теплообмена.

Например, при измерении температуры газа в замкнутом объеме увеличивают конвективный теплообмен тероприемника с газом, создавая искусств, быстрое обтекание газом термоприемника («отсосная» термопара), и снижают лучистый теплообмен со стенками объема, экранируя термоприемник («экранированная» термопара).

Для снижения тепловой инерции в термометрах и пирометрах с электрическим выходным сигналом применяют также специальные схемы, искусственно сокращающие время нарастания сигнала при быстром изменении измеряемой температуры.

Бесконтактные методы измерения температуры

Возможность применения контактных методов при измерениях определяется не только искажением контактным термоприемником измеряемой температуры, но также реальными физическими и химическими характеристиками материалов термоприемника (коррозионной и механической стойкостью, жаропрочностью и т. д.).

Бесконтактные методы измерения свободны от этих ограничений. Однако важнейшим из них, т.е. основанным на законах температурного излучения, присущи особые погрешности, обусловленные тем, что используемые законы в точности справедливы лишь для абсолютно черного излучателя, от которого по свойствам излучения более или менее значительно отличаются все реальные физические излучатели (тела и среды).

В соответствии с законами излучения Кирхгофа любое физическое тело излучает энергии меньше, чем черное тело, нагретое до той же температуры, что и физическое.

Поэтому прибор для измерения температуру, отградуированный по черному излучателю, при измерении температуры реального физического излучателя покажет температуру, меньшую действительной, а именно такую, при которой свойство черного излучателя, использованное при градуировании (энергия излучения, его яркость, его спектральный состав и т. п.), совпадает по своему значению со свойством физического излучателя при данной действительной его температуре, подлежащей определению. Измеренная заниженная псевдотемпература называется черной температурой.

Различные методы измерения приводят к различным, как правило, не совпадающим черным температурам: пирометр радиационный показывает интегральную или радиационную, пирометр оптический — яркостную, пирометр цветовой — цветовую черные температуры.

Переход от измеренных черных к действительным температурам осуществляется графически или аналитически, если известна излучательная способность объекта, температуpa которого измеряется.

Излучательной способностью называется отношение значений используемого для измерения свойства излучения физического и черного излучателей, имеющих одинаковую температуру: при радиационном методе излучательная способность равна отношению суммарных (по всему спектру) энергий, при оптическом — спектральная излучательная способность равна отношению спектральных плотностей энергетической яркости. При прочих равных условиях наименьшие погрешности от нечерноты излучателя дает пирометр цветовой.

Радикальное решение задачи измерения лучистыми методами действительной температуры нечерного излучателя достигается искусств, созданием для него условий, превращающих его в черный излучатель (например, помещением его в практически замкнутую полость).

В некоторых частных случаях возможно измерение действительной температуры нечерных излучателей обычными пирометрами излучения при применении особых методик измерения температуры (например, подсветки, в лучах трех длин волн, в поляризованном свете и др.).

Распространенные приборы для измерения температуры

Громадный диапазон значений измеряемых температур и неисчерпаемое количество различных условий и объектов измерения обусловливают чрезвычайное разнообразие и многочисленность методов и приборов для измерения температуры.

Самые распространенные приборы для измерения температуры:

  • Термоэлектрические пирометры (термометры) ;
  • Электрические термометры сопротивления ;
  • Радиационные пирометры ;
  • Пирометры оптического поглощения ;
  • Оптические яркостные пирометры ;
  • Цветовые пирометры ;
  • Жидкостные термометры расширения ;
  • Газовые манометрические термометры ;
  • Паровые манометрические термометры ;
  • Газовые конденсационные термометры ;
  • Стержневые дилатометрические термометры ;
  • Биметаллические термометры ;
  • Акустические термометры ;
  • Калориметрические пирометры-пироскопы ;
  • Термокраски ;
  • Парамагнитные солевые термометры .

Самые популярные электрические приборы для измерения температуры:

Приборы многих видов, перечисленные выше, используются для измерений различными методами. Например, термоэлектрический термометр используется:

  • для контактного измерения температуры сред и тел, а также поверхностей последних без или в сочетании с устройствами, корректирующими тепловое неравновесие термоприемника и объекта измерения;
  • для бесконтактного измерения температуры радиационным и некоторыми спектроскопическими методами ;
  • для смешанного (контактно-бесконтактного) — измерение температуры жидкого металла по методу газовой каверны (измерение радиационным пирометром температуры излучения газового пузыря, выдуваемого в жидком металле на конце погруженной в него трубки).

Вместе с тем многие методы измерения температуры могут быть реализованы приборами различных видов.

Так, например, температуpa наружного и комнатного воздуха может быть измерена приборами по меньшей мере 15 видов. На фотографии — биметаллический термометр.

Самый большой в мире термометр в Бейкере, Калифорния

Применение приборов для измерения температуры:

Источник

Методы измерения температуры

Пирометрические методы измерения температуры основаны на регистрации характеристик теплового излучения, которое испускает любое «нагретое» тело (здесь под «нагретым» телом мы понимаем тело с температурой выше температуры абсолютного нуля (-273°С)). Соответственно, данные методы реализуются с помощью пирометров – приборов, предназначенных для измерения температуры объекта с некоторого расстояния.

Принцип действия пирометров базируется на том, что интенсивность и спектр излучения тепловой энергии от объекта напрямую зависит от его температуры.

Пирометрические методы измерения температуры классифицируются по диапазону длин волн теплового излучения на оптический и радиационный методы.

Оптические методы измерения температуры основаны на зависимости цвета электромагнитного излучения (в оптическом и ИК-диапазонах) от температуры поверхности объекта. Такую зависимость можно наглядно проследить по изменению цвета излучения с увеличением температуры тела:

  • при 700-800°С — темно-оранжевое свечение;
  • при 1000°С — ярко-оранжевое свечение;
  • при 2000°С — ярко-желтое свечение;
  • при 2500°С — практически белое свечение.
Читайте также:  Как понять какое у тебя давление без измерения

Оптические пирометры по принципу действия подразделяются на яркостные и цветовые (спектрального отношения).

Принцип действия яркостного пирометра основан на визуальном сравнении цвета излучения от объекта с цветом эталонной металлической нити. Окуляр пирометра направляется на исследуемый объект и, регулируя силу тока, нагревают нить до полного слияния ее изображения с цветом свечения объекта, и по величине тока пересчитывают температуру объекта.

Действие цветовых пирометров основано на определении отношения энергетической яркости объекта, измеренной в двух областях спектра. Цветовые пирометры обладают большей точностью по сравнению с яркостными, поэтому и находят большее применение.

В диапазоне относительно небольших температур (до 500°С) основная мощность теплового излучения сосредоточена в инфракрасном диапазоне длин волн (от 0,78 мкм до 14 мкм). Именно на регистрации и пересчете этой мощности основана работа радиационных пирометров:

  1. ИК-излучение от объекта фокусируется объективом пирометра и направляется на термодатчик.
  2. Под действием ИК-излучения термодатчик генерирует электрический сигнал, соответствующий мощности излучения.
  3. Электрический сигнал обрабатывается процессором пирометра, и численное значение температуры выдается на дисплее пирометра.

Радиационные пирометры обладают малым весом и компактными размерами, надежны и удобны в применении, обеспечивают высокую точность и повторяемость измерений, а также, в отличие от оптических пирометров, способны измерять отрицательные температуры. Учитывая эти факторы, а также меньшую стоимость и большую разрешающую способность по сравнению с оптическими пирометрами, сегодня абсолютное большинство мобильных портативных пирометров работает по радиационному принципу.

Среди относительных недостатков радиационного метода измерения температуры необходимо назвать зависимость результатов измерений от излучательной способности поверхности объекта и расстояния съемки. Для исключения данных ошибок измерений необходимо правильно подбирать в настройках пирометра коэффициент излучательной способности поверхности и проводить съемку в соответствии с оптическим разрешением пирометра. Все это подразумевает достаточно высокую квалификацию оператора, которую можно получить на курсе «Радиационные пирометры. Тепловой метод неразрушающего контроля», который периодически проводится в Учебном Центре компании MVR.

Также в компании MVR вы можете купить пирометр серии RY-150 с температурным диапазоном от -20°С до 500°С и коэффициентом визирования 8:1.

Пирометры MVR отличает:

  • уникальный эргономичный дизайн;
  • ударопрочный и пылезащищенный корпус из ABS пластика;
  • точный и долговечный приемник инфракрасного излучения;
  • прецизионные линзы, обеспечивающие работу в условиях
  • высокая помехоустойчивость;
  • меньшая погрешность измерений за счет комплектации новейшими процессорами;
  • быстрое согласование изменяемого коэффициента излучения с

особенностями объекта измерения;

  • возможность установки порогового уровня.

Благодаря отличным техническим характеристикам, высокому качеству сборки, простоте и надежности эксплуатации, пирометры RY-150 считаются одними из лучших по соотношению цена/качество/функциональность и находят самое широкое применение в металлургии, бумажном производстве, на ж/д транспорте, в строительстве, энергоаудите, ЖКХ, научных исследованиях и многих других приложениях.

Источник

МЕТОДЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Рассмотрим следующие методы измерения температуры: объ­емный, манометрический, терморезисторный (метод термосопро­тивлений), термоэлектрический и пирометрический.

1. Объемный метод [14], [15]

Объемный метод измерения температуры основан на тепловом расширении (изменении объема) различных тел. По этому прин­ципу строятся дилатометрические, биметаллические и жидкост­ные термометры.

Дилатометрический термометр (рис. 7.1) состоит из патрона 1 и штока 2, изготовленных из материалов с различ­ными коэффициентами линейного расширения и .

Для повышения чувствительности необходимо применять ма­териалы, у которых и возможно больше отличаются друг от друга, в то же время коэффициент линей­ного расширения материала штока следует выбирать близким к нулю для умень­шения теплового запаздыва­ния, обусловленного тем, что шток прогревается мед­леннее, чем патрон (патрон непосредственно соприка­сается со средой, темпера­тура которой измеряется, а шток отделен от нее воз­душной прослойкой). Исходя из этого шток целесообразно изго­товлять из сплава типа инвар ( =l*10- 6 ), a патрон — из мате­риала с большим , например из дуралюмина ( = 23-10

Ввиду малости перемещения штока (десятые доли мм) ди­латометрический термометр содержит передаточно-множительный механизм, увеличивающий перемещение штока до величины, удобной для отсчета.

Биметаллические термометры (рис. 7.2) так же, как и дилатометрические, основаны на тепловом расширении твердых тел и отличаются лишь способом соединения компонент Теплочувствительный элемент представляет собой биметалличе­скую пластину, состоящую из двух сваренных или сплавленных (реже спаянных) по всей длине пластин с различными коэффи­циентами линейного расширения и . При нагревании биме­таллическая пластина изгибается таким образом, что ее выпук­лость образуется со стороны материала с большим .

Угол изгиба биметаллической пластины определяется фор­мулой [15] ,

где l — длина биметаллической пластины;

h — суммарная толщина биметаллической пластины;

— величина изменения температуры.

Линейное перемещение прямой консольно закрепленной пла­стины

,

где — чувствительность.

В авиационных приборах применяют биметаллические пла­стины, состоящие из стали ( = 19 • 10 -6 ) и инвара ( =1 • 10 -6 ).

По сравнению с дилатометрическим элементом биметалличе­ский элемент дает большее перемещение при меньших габаритах, что позволяет уменьшить передаточное отношение механизма.

При выполнении биметаллического чувствительного элемента в виде спиральной или винтовой пластины (см. рис. 7.2,6, в), один конец которой закреплен неподвижно, а другой — связан с выходной осью, можно получить большой угол поворота вы­ходной оси (до 360°), что позволяет поместить указывающую стрелку непосредственно на эту ось и исключить из конструк­ции термометра передаточно-множительный механизм.

Биметаллические термометры подобного рода применяются для измерения температуры окружающей среды (см. рис. 7.2, г).

Жидкостные термометры действуют на основе тепло­вого изменения объема жидкостей.

Схемы двух вариантов жидкостных термометров показаны на рис. 7.3.

Жидкостный термометр (см. рис. 7.3, а) состоит из цилиндри­ческого баллона 1, внутрь которого впаян сильфон 2. Свободный конец сильфона связан со штоком 3, выпущенным наружу бал­лона, а пространство между стенками сильфона и баллона за­полнено жидкостью. Баллон помещается в среду, температура

которой измеряется. Объем жидкости зависит от температуры следующим образом:

Читайте также:  Термины измерения количества информации

,

где — начальный объем жидкости при 0 0 С,

— коэффициент объемного расширения жидкости,

— температура в 0 С.

Значения для некоторых жидкостей приведены в таблице 7.1.

Линейное перемещение конца штока при нагревании элемента от 0 0 С до температуры С определяется выражением

,

где F- эффективная площадь сильфона.

Увеличение жесткости сильфона приводит к увеличению дав­ления внутри системы, что, однако, не влияет на величину s ра­бочего хода. Вследствие практической несжимаемости жидкости величина s определяется приращением объема жидкости иэф­фективной площадью сильфона. В то же время увеличение жест­кости сильфона позволяет повысить верхний предел измерения, так как температура кипения жидкости увеличивается с увеличе­нием давления.

Жидкостный термометр дистанционного типа (см. рис. 7.3, б) состоит из заполненного жидкостью баллона, погруженного в сре­ду, температура которой измеряется, и соединенного капиллярной трубкой с упругим чувствительным элементом (сильфоном, мано­метрической коробкой или трубчатой пружиной), перемещение которого через передаточно-множительный механизм передается на указывающую стрелку. Показания дистанционного жидкост­ного термометра подвержены влиянию температуры воздуха, ок­ружающего соединительную трубку и указатель. Погрешность пропорциональна объему соединительной трубки и упругого чув­ствительного элемента.

2. Манометрический метод[3], [12]

Манометрический метод измерения температуры основан на тепловом изменении давления газа (пара) внутри замкнутого объема. По этому методу действуют газовые и парожидкостные термометры.

Схемы газовых термометров подобны схемам жидкостных термометров. Различие состоит в том, что внутренняя полость теплочувствительного элемента заполняется вместо жидкости инертным газом.

Вследствие сжимаемости газа действие газового термометра принципиально отличается от действия жидкостного термометра: газовый термометр работает не на принципе расширения рабо­чего тела, а на принципе изменения его давления. В жидкостном термометре рабочий ход сильфона благодаря практической не­сжимаемости жидкости определяется тепловым приращением объема жидкости и эффективной площадью сильфона и не зави­сит от жесткости сильфона, в то время как давление жидкости пропорционально жесткости сильфона. В газовом термометре, наоборот, давление газа почти не зависит от жесткости сильфо­на (если пренебречь изменением его объема по сравнению с на­чальным объемом всей системы), а рабочий ход сильфона обрат­но пропорционален его жесткости.

В газовом термометре, построенном по схеме рис. 73, а, абсо­лютное давление газа (при условии постоянства его объема) равно

,

где — термический коэффициент давления,

р – начальное давление внутри баллона при .

Перемещение центра сильфона

,

где сж коэффициент линейной жесткости сильфона,

р2 давление окружающей среды.

В газовом термометре, построенном по схеме, представленной на рис. 7.3, б, возникают погрешности при изменении давления и температуры окружающего воздуха. Для исключения влияния давления окружающей среды можно применить вместо диффе­ренциального манометра манометр абсолютного давления; для уменьшения влияния температуры окружающей среды объемы соединительной трубки и упругого чувствительного элемента должны быть как можно меньшими.

Принципиальная схема парожидкостного термометра также соответствует схеме жидкостного термометра (см. рис. 7.3), но заполняется система специальной жидкостью, кото­рая при нормальном давлении закипает при низкой температуре. К числу таких жидкостей, получивших название низкокипящих, относятся, например, метилхлорид (СН3С1), закипающий при —24° С (при р = 760 мм рт. ст.) и ацетон (С3Н6О), закипающий при + 56° С (при р = 760 мм рт. ст.).

При нагревании баллона до некоторой температуры абсолют­ное, давление в системе возрастает до определенной величины р1 , при которой часть жидкости переходит в пар и устанавливается равновесие, при котором дальнейшее испарение жидкости пре­кращается. С уменьшением температуры часть пара конденси­руется, т. е. переходит в жидкое состояние, и давление в системе уменьшается.

Давление p1 однозначно зависит от ; вид функциональной зависимости определяется только составом жидкости и не связан с формой и геометрическими размерами баллона и упругого чувствительного элемента.

В табл. 7.2 приведены характеристики некоторых низкокипя­щих жидкостей.

Нижний предел измерения ограничен температурой, при ко­торой весь пар переходит в жидкость и зависит от начального давления, при котором заполняется система. Верхний предел из­мерения ограничен критической температурой, выше которой давление резко возрастает и нарушается функциональная связь между р и .

3. Терморезисторный метод (метод термосопротивлений) [4], [9]

Терморезисторный метод измерения температуры основан на тепловом изменении электрического сопротивления проводников или полупроводников.

Верхний предел измеряемых температур зависит от материа­ла терморезистора. Применяются терморезисторы медные (до + 180° С), никелевые (до +300°С) платиновые (до +1250° С) иполупроводниковые (до + 180° С).

Подробнее приборы и датчики температуры, основанные на терморезисторном методе, рассматриваются в § 7.4.

4. Термоэлектрический метод [4], [7]

Термоэлектрический метод измерения температуры основан на возникновении контактного потенциала между двумя контак­тирующими между собой разнородными проводниками (или по­лупроводниками) при разности температур свободных и рабочего концов этих проводников.

Верхний предел измеряемых температур, определяемый глав­ным образом теплостойкостью термоэлектродов, достигает для хромель-копелевых термопар +800° С, платино-платинородиевых + 1600° С, вольфрам-молибденовых до 2400° С и т. д.

Подробнее приборы и датчики температуры, основанные на термоэлектрическом методе, рассматриваются в § 7.5.

5. Оптический метод[6]

Оптический метод измерения температуры основан на зави­симости энергии, излучаемой нагретым телом, от его темпера­туры. Яркость излучения оценивается визуально с помощью оптических устройств или преобразуется в электрический сигнал спомощью чувствительных фотоэлектрических элементов. По­строенные по этому методу приборы называют пирометрами из­лучения. Различают пирометры полного излучения (радиацион­ные), пирометры частичного излучения (яркостные) и пиромет­ры цветовые (спектрального соотношения).

На летательных аппаратах нашли преобладающее примене­ние терморезисторные датчики температуры (термосопротивле­ния) итермоэлектрические датчики (термопары) благодаря сво­ей простоте, стабильности характеристик ивозможности преоб­разования температуры непосредственно в электрическую вели­чину ‘.

Терморезисторы и термопары используются как в качестве воспринимающих устройств систем автоматического регулирова­ния и управления, так и в качестве датчиков электрических ди­станционных термометров.

Источник